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Abstract

We present a new methodology for simultaneous variable selection and parameter

estimation in function-on-scalar regression with an ultra-high dimensional predictor

vector. We extend the LASSO to functional data in both the dense functional setting

and the sparse functional setting. We provide theoretical guarantees which allow for an

exponential number of predictor variables. Simulations are carried out which illustrate

the methodology and compare the sparse/functional methods. Using the Framingham

Heart Study, we demonstrate how our tools can be used in genome-wide association

studies, finding a number of genetic mutations which affect blood pressure and are

therefore important for cardiovascular health.

K eywords: Functional Data Analysis, High-Dimensional Regression, Variable Selection,

Functional Regression

1 Introduction

Over the last several decades, technological advances have supported and necessitated the

rapid growth of high-dimensional statistical methods. One the most important applications

for these methods are genome-wide association studies (GWAS). In these studies, researchers

search through hundreds of thousands or millions of genetic mutations known as SNPs, single

nucleotide polymorphisms, finding those which significantly impact an outcome or phenotype

of interest, e.g. blood pressure, diabetes, asthma, etc. GWAS have been hugely successful at

finding gene/disease associations as evidenced by the massive repositories of genetic studies
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and findings, such as dbGaP (http://www.ncbi.nlm.nih.gov/gap). Next-generation or high-

throughput sequencing technologies are capable of sequencing entire genomes, producing

ever-larger genetic datasets to explore. Thus, to further our understanding of the genetic

architecture of complex human diseases, there is a substantial and continuing need for pow-

erful, high-dimensional association techniques.

The vast majority of GWAS are cross-sectional, examining only one point in time. The

aim of this paper is to present a new framework which combines functional data analysis,

FDA, and machine leaning for finding and estimating significant effects on longitudinally

measured outcomes. We refer to this methodology as Function-on-Scalar LASSO, or FS-

LASSO. As in Reiss et al. (2010), we use the term Function-on-Scalar to help distinguish

our setting from the wide array of regression problems now in existence. In GWAS, the

“function” is the time-varying phenotype of the individual, and it is being regressed on the

“scalar”, which is the individual’s constant (non-time-varying) genotype.

Our aim is to simultaneously exploit the sparse effect of the SNPs and the smooth nature

of the longitudinal outcomes. While we are strongly motivated by genetic studies, our

methods are general and allow for any setting with a longitudinal/functional outcome and

high-dimensional scalar predictors. Our primary goal is to select and estimate the effect of

predictors in the following functional linear model

Yn(t) = µ(t) +
I∑
i=1

Xniβi(t) + εn(t).(1)

Here Yn(t) is the value of a quantitative outcome for subject n ∈ {1, . . . , N}, at time t ∈ T ⊂
R. The scalars Xni are real-valued, though in our application they take values in {0, 1, 2}
indicating the minor allele count for the SNP. The number of predictors, I, is allowed to

be much greater than the sample size N . This is known as a “scalar predictor/functional

response” model. Functional data analysis (FDA) now consists of two main branches: (1)

sparse FDA, where the outcomes, Yn, are observed at a relatively small number of time

points and are contaminated with noise, and (2) dense FDA, where outcomes are observed

at a large number of time points (possibly with a small level of noise). In practice, some data

clearly fall into one of these two categories, say with hundreds or thousands of observations

per subject, or with only a handful. There are also many settings where it is not clear which

scenario one is in. While establishing a clear cutoff still a relatively open problem, we refer

the interested reader to Li and Hsing (2010) and Zhang and Wang (2015+) who suggest the

line is when the number of points per curve is greater/less than the quad-root of the sample

size. We emphasize that this is just a basic rule of thumb, and care must be taken with each

application. We present our methodology for each scenario and we later explore how their

performances differ via simulations. In the functional case, as we will see, our methods and

theory will actually include a wide range of settings beyond just (1).

At the heart of our methodology is the now classic idea of combining basis expansions for

estimating the functions βi, with proper penalties which induce sparse estimates. While the
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methods and theory are new, we can phrase the problem as a type of group LASSO, which

allows us to utilize existing computational tools.

The contributions of this paper include the following. First, we provide new asymptotic

results for the sparse setting. Our results can be viewed as an extension of the varying

coefficient methods discussed in Wei et al. (2011). In particular, we present a new restricted

eigenvalue result which is one of the cornerstones for developing convergence rates in high

dimensions, as well as the accompanying asymptotic convergence rates for our estimates.

Second, we provide a new methodology and accompanying asymptotic theory for a broad

class of dense settings, which, to the best of our knowledge, has not been explored before.

Interestingly, we show that the FS-LASSO applied to outcomes in any separable Hilbert

space achieves the exact same rates of convergence as in the scalar setting. This could have

broad implications for not only traditional functional outcomes, but also spatial processes,

functional panels, and imaging data such as fMRI. Finally, we demonstrate via simulations

some surprising results concerning the choice between the sparse and dense tool sets. In

particular, we find that a dense approach is comparable to the sparse in terms of variable se-

lection even in traditionally sparse settings. Furthermore, the dense methods can be carried

out at a fraction of the computational cost (both in terms of power and memory). However,

the sparse methods produce estimates which are more accurate in traditionally sparse set-

tings. This opens the doors to interesting two-stage procedures where variable screening is

done using dense tools, and final estimation is done via sparse ones.

Related literature For foundations on functional data analysis we refer to Ramsay and

Silverman (2005) and Horváth and Kokoszka (2012), while an overview of machine learning

can be found in Hastie et al. (2001) and James et al. (2013). The literature on functional

regression is now quite large, but we attempt to provide several key methodological papers,

which help outline the field. Functional regression methods for sparse data include the fol-

lowing. Hoover et al. (1998) examine spline based methods for estimating a simpler form

of the functional predictor/functional response model. Fan and Zhang (2000) provide a two

step method based on local polynomial smoothing to estimate a functional predictor/scalar

response model. Yao et al. (2005) present what has likely become the most common method

based on scatter plot smoothing (i.e. local polynomial smoothing) and functional principal

components for estimating a full functional predictor/functional response model. Zhu et al.

(2012) extend local linear smoothing methods for estimating scalar predictor/multivariate

functional response models. Methods for high dense FDA include the following. Cardot

et al. (2003) explore spline based methods for a functional predictor/scalar response model.

Kokoszka et al. (2008) use a PCA based approach for estimating a full functional predic-

tor/functional response model. James et al. (2009) incorporate shrinkage methods in es-

timating a functional predictor/scalar response model (for the purposes of estimating the

”zero” parts of the regression function). Reiss et al. (2010) examine a B-spline approach

for scalar predictor/functional response models, while Reimherr and Nicolae (2014) explore

more direct least squares (of a functional norm) estimators for scalar predictor/functional re-
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sponse models. However, all of these methods assume a fixed number of covariates. Related

work which incorporates an increasing number of predictors mainly comes from the litera-

ture on varying coefficient models, for example Wang et al. (2008), Zhao and Xue (2010) and

Wei et al. (2011). The only related work in the FDA literature concerns scalar-on-function

regression, the reverse of our focus. In particular, Matsui and Konishi (2011) combine basis

expansions with a SCAD style penalty, but give no theoretical guarantees. Lian (2013) also

uses a SCAD penalty, but combined with FCPA instead of a general basis function. Theory

is provided, but only in the case where the number of predictors is fixed. Gertheiss et al.

(2013) developed a procedure for a generalized scalar-on-function linear model again using

basis expansions, but combined with a LASSO style penalty which simultaneously shrinks

and smooths parameter estimates; no theoretical guarantees are given. Fan et al. (2014,

2015+) consider functional additive regression models with a large number of predictors.

Their methods allow for nonlinear relationships and theoretical properties are established.

Lastly, Kong et al. (2016) consider the problem of variable selection with a scalar outcome

and scalar predictors, but with a small set of functional predictors that must be accounted

for as well. We emphasize that all of these methods are for the scalar-on-function case; for

the function-on-scalar case the only work we are aware of is by Chen et al. (2016) who con-

sider a basis expansion approach with a MCP style penalty and fixed number of covariates,

but their method cannot be applied to settings where I � N .

Outline The remainder of the paper is organized as follows. In Section 2 we provide

a framework for scalar predictor/functional response regression with sparsely observed out-

comes. We combine basis expansions with a group LASSO style penalty to carry out variable

selection and parameter estimation simultaneously. In Section 3 we present the high dense

setting. We provide a very general framework where the response functions are allowed to

take values from a separable Hilbert space. This allows the functions to be from say L2(T ),

which is commonly used, as well as more general spaces such as Sobelev spaces or product

spaces of function spaces (i.e. vectors of functions). In Section 4 we provide computational

details, including a pre-screening rule which allows one to reduce I substantially before fitting

the FS-LASSO, and details for making use of established computational machinery for the

group LASSO. We present a simulation study in Section 5 where we explore our procedure

in terms of variable selection, parameter estimation, and computational time. In Section 6

we apply our methods to the Framingham Heart Study (FHS), to identify genetic markers

that influence blood pressure, in hopes of gaining a better understanding of cardiovascular

disease. Genome–wide SNP data and phenotype information were downloaded from dbGaP

(http://www.ncbi.nlm.nih.gov/gap) study accession phs000007.v25.p9. Concluding remarks

are given in Section 7, while all theoretical results are proven in the Appendix.
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2 The Sparse Setting

Sparse FDA occurs quite often in longitudinal studies where one has a relatively small number

of observed time points per subject or unit. In this case, it is common to work with the

raw measurements as opposed to the functional embeddings discussed in Section 3. A brief

introduction to sparse FDA can be found in Müller (2008).

We begin with the underlying model.

Assumption 1. Assume, for 1 ≤ n ≤ N and 1 ≤ m ≤Mn ≤M <∞, that

Ynm =
I∑
i=1

Xniβ
?
i (tnm) + εn(tnm), tnm ∈ T .

The error processes {εn(t) : t ∈ T } are iid Gaussian and we define the Mn ×Mn covariance

matrix Σn := Cov
(
(εn(tn1), . . . , εn(tnMn))

)
. The design matrix, X, is deterministic.

Throughout, we will use a ? to denote true parameter values. For the moment, we do not

include assumptions on {tnm} or coefficient functions β?i . Note that the Gaussian assumption

is not crucial—what is really needed is that the processes have subgaussian tails, though we

make the Gaussian assumption to simplify the arguments.

Let {ej(·)} be a basis in L2(T ). Approximating the functions β?i using this basis, we have

that

Ynm =
I∑
i=1

J∑
j=1

XniB
?
ijej(tnm) + Tnm + εn(tnm),

where Tnm is the truncation error obtained after cutting off the basis expansion at J . The

following notation will be used repeatedly throughout this section and in the Appendix:

T = (T11, T12, . . . , TNMN
)> ∈ R

∑
nMn ,

Enm = (e1(tnm), . . . , eJ(tnm))> ∈ RJ ,

En = (En1, . . . EnMn)> ∈ RMn×J ,

F =
1

N

N∑
n=1

E>nEn ∈ RJ×J .

For a matrix B ∈ RI×J , define the sparse target function as

L(B) =
1

2

N∑
n=1

Mn∑
m=1

(
Ynm −

I∑
i=1

J∑
j=1

XniBijej(tnm)

)2

+ λ ‖B‖`1/`2 ,

where ‖B‖`1/`2 =
∑

i ‖Bi∗‖2 promotes row-wise sparsity (here Bi∗ denotes the ith row of

the matrix B). The estimate B̂ is the minimizer of the above expression. The estimated
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coefficient functions are then given by β̂i(·) =
∑J

j=1 B̂ijej(·). The target function can be

rephrased so that traditional group LASSO machinery can be invoked. Notice that

I∑
i=1

J∑
j=1

XniBijej(tnm) = X>n BEnm = E>nmB>Xn = (X>n ⊗ E>nm) vec(B>).

One can then stack the (X>n ⊗ E>nm) vectors into a matrix, A,

A =


X>1 ⊗ E>11
X>1 ⊗ E>12

...

X>N ⊗ E>NMN

 =


X>1 ⊗ E1

X>2 ⊗ E2

...

X>N ⊗ EN

 ∈ R(
∑
nMn)×IJ .

The target function can now be expressed as

(2) L(B) =
1

2
‖Y −A vec(B>)‖22 + λ‖B‖`1/`2 ,

where

Y = (Y11, . . . , Y1M1 , . . . , YN,MN
)>.

Group LASSO computational tools can then be used to find B̂.

Since the matrix A will generally have more columns than rows, the linear system Y ≈
A vec(B>) is underdetermined; in particular the (right) null space of A is large. However,

the grouped sparsity structure in B allows us to resolve this difficulty. We first recall the

notion of restricted eigenvalues Bickel et al. (2009), used for sparse regression (without group

structure):

Definition 2.1 (Restricted eigenvalue condition). A matrix A ∈ RN×I satisfies the RE(I0, α)

condition if, for all subsets S ⊂ {1, . . . , I} with |S| ≤ I0,

‖Aw‖22 ≥ αN ‖w‖22 for all w ∈ RI with ‖wSc‖`1 ≤ 3 ‖wS‖`1 .

The constant 3 here is somewhat arbitrary, but it is standard in the literature and we use it

here for convenience. Lounici et al. (2011) extend this definition to the group-sparse setting:

Definition 2.2 (Grouped restricted eigenvalue condition). A matrix A ∈ RN×IJ satisfies

the REgroup(I0, α) condition if, for all subsets S ⊂ {1, . . . , I} with |S| ≤ I0,∥∥A vec(W>)
∥∥2
2
≥ αN ‖W‖2F for all W ∈ RI×J with ‖WSc‖`1/`2 ≤ 3 ‖WS‖`1/`2 .

Here WS denotes the submatrix of W obtained by extracting the rows indexed by S, while

WSc contains only the rows in Sc, the complement of S.
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2.1 Bounding the error

With these definitions in place, our first result is a modified version of Lounici et al. (2011)’s

analysis of the group LASSO. It proves resulting bounds on the error B̂ −B?, where B? is

the (truncated) true parameter matrix, as long as λ is sufficiently large and A satisfies the

grouped restricted eigenvalue condition.

Theorem 1. Suppose that Assumption 1 holds and that for some δ ∈ (0, 1)

(3) λ ≥ 2
√
N ‖F‖op

(
‖T‖2 +

√
max
n
‖Σn‖op (2J + 3 log(2I/δ))

)
.

Assume also that B? has at most I0 nonzero rows, and that A satisfies the REgroup(I0, α)

condition for some α > 0. Then with probability at least 1 − δ, any minimizer B̂ of (2)

satisfies ∥∥∥B̂−B?
∥∥∥
F
≤ 3λ

√
I0

αN
and

∥∥∥B̂−B?
∥∥∥
`1/`2
≤ 12λI0

αN
.

Remark 2.1. Results for sparse regression in a non-grouped setting commonly give error

bounds in both an `2 norm and an `1 norm; the former typically gives a more favorable scaling

of sample size with respect to sparsity, while the latter ensures that for a larger sample size

the error itself is nearly sparse, i.e. does not have a “long tail” of small errors on many

coordinates. Similarly, here we give results in both the Frobenius norm (with more favorable

sample size scaling) and the `1/`2 norm.

Remark 2.2. As is standard in the LASSO literature, the consistency results given in this

theorem can yield a selection consistency result as well: if we assume that mini∈I0 ‖B?
i ‖2 >

6λ
√
I0

αN
, then the bound on

∥∥∥B̂−B?
∥∥∥
F

implies that the following estimated support,

Ŝ =

{
i ∈ {1, . . . , I} :

∥∥∥B̂i∗

∥∥∥
2
>

3λ
√
I0

αN

}
,

is correct (i.e. Ŝ is equal to the row support of B?) with high probability.

As is widely appreciated by researchers working on such results, Theorem 1 essentially

hinges on concentration inequalities and restricted eigenvalue type conditions. Neither of

these tools can be readily applied to our setting. Thus, much of our theoretical work is

focussed on showing how to extend these ideas to the functional setting. Below we discuss the

restricted eigenvalue condition at length, while discussion of the concentration inequalities

involved can be found at the end of Appendix B.1. Concentration inequalities allow us to

control the stochastic error in the model and largely dictate the rates of convergence, while

the restricted eigenvalue conditions allow us to bound the error
∥∥∥B̂−B?

∥∥∥
F

from above by

a term involving ‖A vec
(
(B̂ − B?)>

)
‖2, and therefore to obtain convergence rates for the

parameters of interest.
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Note that the phrasing of Theorem 1 allows for the possibility of multiple minimizers of (2),

guaranteeing only that any minimizer must achieve the specified converge rates. However,

in practice it rare is for LASSO style estimates to not be unique. We direct the interested

reader to Tibshirani (2013) for a thorough discussion of this issue.

Example: We next give an example to illustrate the type of scaling that is obtained in

Theorem 1. Let W τ,2[0, 1] denote the Sobelev space consisting of functions over [0, 1], which

have square integrable derivatives of up to order τ . Suppose that the coefficient functions,

βi, take values in a finite ball in W τ,2. Let the basis e1(·), e2(·), . . . denote the Fourier basis

and assume that the time points tnm are iid U [0, 1]. Examining λ, there are now a number

to terms which can be made more explicit. First, since the basis is orthogonal we have

F ≈ IJ×J , so that ‖F‖op is behaves like a constant. Next, examining the truncation term

T , there are
∑

nMn ∼ N coordinates, and each coordinate consists of a sum of I0 functions

each of which lies in a Sobelev ball, thus we have that ‖T‖ ≈
√
NI0J

−τ . Examining the

second term in λ, we have that√
max
n
‖Σn‖op (2J + 3 log(2I/δ)) ∼

√
J + log(I) ≤

√
J log(I).

We therefore want to choose J to balance the two errors, which means taking J such that

√
NI0J

−τ =
√
J log(I) =⇒ J =

(
NI0

log(I)

) 1
1+2τ

.

Plugging this into our expression for the convergence rates, and assuming that the restricted

eigenvalue condition REgroup(I0, α) holds for the matrix A with some α > 0 that we treat as

a constant, we have that

‖∆‖F = OP (1) ·
N1/2

√
J log(I)I

1/2
0

N
= OP (1) · I0

(
log(I)

NI0

) τ
1+2τ

,

where ∆ := B − B̂. We see that the standard nonparametric rate of convergence appears

which relates the convergence rates to the smoothness of the underlying parameter functions.

This rate also applies to the difference ‖β̂−β‖L2 . Notice that by Parceval’s identity and the

Triangle inequality

‖β̂ − β‖L2 =

(
I∑
i=1

∫
(β̂i(t)− βi(t)2) dt

)1/2

≤ ‖∆‖F + ‖Π⊥J β‖L2 ,

where Π⊥J is the projection onto the remaining basis functions eJ+1(·), . . . . By the assumed

smoothness of the β, we have that

‖Π⊥J β‖L2 ∼
√
I0J

−τ =
√
I0

(
NI0

log(I)

) −τ
1+2τ

≤ I0

(
log(I)

NI0

) τ
1+2τ

,
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Thus the rate for ‖β̂ − β‖L2 is the same as for ‖∆‖F.

For the `1/`2 norm we then have

‖∆‖`1/`2 = OP (1) · λI0
N

= OP (1) · I3/20

(
log(I)

NI0

) τ
1+2τ

.

By the same arguments as before, the above rate also applies to the sum of the normed

differences between the functions, i.e. ‖β̂ − β‖`1 . As we will see, when τ → ∞, the rate

above converges to the rate found for the dense setting.

2.2 Restricted eigenvalue condition

Our next result concerns the restricted eigenvalue condition. It proves that, if the covariates

Xn are drawn from a Gaussian or subgaussian distribution with well-conditioned covariance

structure, then the grouped restricted eigenvalue condition will hold for A.

Theorem 2. Suppose that Xn
iid∼ N(0,Σ) with ‖Σ‖ ≤ ν2, or more generally, the Xn’s are

iid where each Xn has mean 0, covariance Σ, and is ν-subgaussian meaning that E[ev
>Xn ] ≤

eν
2‖v‖22/2 for any fixed vector v. Suppose that λmin(Σ) > 0. Consider any fixed sequence of

matrices E1 ∈ RM1×J , . . . , EN ∈ RMN×J satisfying

(4) min
w∈RJ\{0}

∑
n ‖Enw‖2
N ‖w‖2

≥ γ0 > 0, max
w∈RJ\{0}

√∑
n ‖Enw‖22
N ‖w‖22

≤ γ1 ,

and define A ∈ R
∑
nMn×IJ as before. Then there exist c0, c1, c2 > 0 depending only on

ν, λmin(Σ), γ0, γ1, such that, if

(5) N ≥ c0 · k · log(IJ) · (J + log(I)) ,

then with probability at least 1− e−c1N , A satisfies the REgroup(k, c2) condition.

Remark 2.3. This theorem is a primary distinction between our work discussed thus far

and that of Wei et al. (2011). Their work cites existing results which imply that the ma-

trix A behaves appropriately for each approximately-row-sparse W in expectation, that is,

E
[ ∥∥A vec(W>)

∥∥2
2

]
is lower-bounded for each W. In contrast, our theorem above proves the

much stronger statement that
∥∥A vec(W>)

∥∥2
2

can be lower-bounded simultaneously with high

probability for all approximately-row-sparse W, which is necessary for estimation in high

dimensions.

Remark 2.4. The conditions (4) on the basis matrices En are of course dependent on the

choice of basis; this type of basis-dependent assumption is standard in the nonparametric

literature. As a simple example of a choice of basis where (4) is satisfied, suppose that there

are J evenly spaced time points and our basis is given by J orthonormal functions (e.g. a
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Fourier basis). Suppose measurements for each individual are taken at a random subset of

J ′ time points from the original J . Then each En is a J ′ × J submatrix chosen at random

from some larger J ×J orthogonal matrix (corresponding to e.g. the Fourier basis), in which

case γ1 = 1 and γ0 ∼
√
J ′/J .

The assumption given in (4) is a condition number type constraint. The upper bound is

simply a bound on the largest eigenvalue of F = 1
N

∑
n E>nEn, while the lower bound is a bit

stronger than a corresponding bound on the smallest eigenvalue. It is, in essence, saying that

the norms ‖Enw‖22 should be on the order of ‖w‖22 for many of the indices n. (In contrast,

upper and lower eigenvalue conditions would only ensure that ‖Enw‖22 is on the order of

‖w‖22 on average, but would not prevent degenerate scenarios such as ‖E1w‖22 = N ‖w‖22 and

‖E2w‖22 = · · · = ‖ENw‖22 = 0.)

3 The Dense Setting

When the underlying functions are observed at a relatively large number of time points, a

different approach than the one described in Section 2 is commonly employed. In particular,

for each subject n ∈ {1, . . . , N}, the observations Ynm = Yn(tnm) are embedded into a func-

tion space, which are then treated as though they were fully observed functions. Implicitly,

one is assuming that the error from the embedding is negligible compared to other sources

of variability. More details and background can be found in Horváth and Kokoszka (2012).

We begin by defining the underlying model.

Assumption 2. Let Y1, . . . , YN be independent random elements of a real separable Hilbert

space, H, satisfying the functional linear model

Yn =
I∑
i=1

Xniβi + εn.

Assume the N × I design matrix X = {Xni} is deterministic and has standardized columns,

the εn are iid square-integrable Gaussian random elements of H with mean 0 and covariance

operator C, and βi are deterministic elements of H. Let Λ = (λ1, λ2, . . . ) denote the vector

of eigenvalues of C.

Remark 3.1. We emphasize that, throughout this section, the responses Yn, coefficients βi,

and errors εn are all elements of the Hilbert space (e.g. functions), rather than scalars as in

the usual high-dimensional regression setting. Our work in this section can be viewed as a

functional analogue of existing high-dimensional sparse signal recovery results for the scalar

setting (i.e. the ordinary LASSO).
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The most common choice for the function space H is L2(T ) where T is a closed and

bounded interval. However, the advantage of our phrasing is that we allow for a number of

other spaces, including Sobolev spaces (if one wants to better utilize the smoothness of the

data), product spaces (if the response is actually a vector of functions), or multidimensional

domains (which could arise in areas such as spatial statistics). Throughout this section,

when we write ‖ · ‖H we will always mean the inner product norm on H. Norms which

deviate from this inner product norms will include alternative subscripts.

As before, when applying the FS-LASSO, we are assuming that the true underlying model

is sparse, with I0 denoting the number of true predictors and S0 denoting the true set

of predictors. The FS-LASSO estimate is then the solution to the following minimization

problem

β̂ = argminβ∈HI LF(β),

where

LF(β) =
1

2

N∑
n=1

‖Yn −X>n β‖2H + λ‖β‖`1/H for ‖β‖`1/H =
I∑
i=1

‖βi‖H .

The norm ‖ · ‖`1/H is a type of `1 norm on the product space HI , which encourages sparsity

among the list of functions β1, . . . , βI (that is, the function βi will be uniformly zero for many

indices i). The target function LF(·) is a direct Hilbert space generalization of the LASSO

target function.

Next we introduce a functional restricted eigenvalue assumption, which is a direct analogue

of similar assumptions in the LASSO literature (e.g. Bickel et al. (2009)).

Definition 3.1. We say a matrix A ∈ RN×I satisfies a functional restricted eigenvalue

condition, REF(I0, α), if for all subsets S ⊂ {1, . . . , I} with |S| ≤ I0, we have

‖Ax‖2HN ≥ αN‖x‖2HI for all x ∈ HI that satisfy ‖xSc‖`1/H ≤ 3‖xS‖`1/H.

In fact, this functional restricted eigenvalue assumption is no stronger than the usual

(scalar) restricted eigenvalue assumption—in the following theorem we show that any matrix

A satisfying the usual (scalar) restricted eigenvalue assumption, will also satisfy the func-

tional version given in Definition 3.1. We do this by showing that the common inequality

used for proving that a matrix satisfies a scalar restricted eigenvalue condition immediately

implies the same inequality in the functional setting, and leads to the restricted eigenvalue

condition.

Theorem 3. For a fixed matrix X ∈ RN×I , suppose that for some c1, c2 > 0, X satisfies

‖Xz‖2 ≥ c1
√
N · ‖z‖2 − c2

√
log(I) · ‖z‖`1 ,

for all z ∈ RI . Then the same inequality holds for all x ∈ HI , that is,

(6) ‖Xx‖H ≥ c1
√
N · ‖x‖H − c2

√
log(I) · ‖x‖`1/H.
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Furthermore, if c1 > 4c2

√
I0 log(I)

N
, then X satisfies the REF(I0, α) property with

α =

(
c1 − 4c2

√
I0 log(I)

N

)2

.

We are now ready to present the main result of the section.

Theorem 4. If Assumption 2 holds, X satifies REF(I0, α), and

λ ≥ 2
√
N

√
‖Λ‖1 + 2‖Λ‖2

√
log(I/δ) + 2‖Λ‖∞(log(I/δ)),

then with probability at least 1− δ, any minimizer β̂ of LF (β) satifies

‖X(β̂ − β?)‖H ≤
4λ
√
I0√

αN
and ‖β̂ − β?‖`1/H ≤

16λI0
αN

.

We mention that since Λ is vector of the eigenvalues of C in decreasing order, then one

has that ‖Λ‖22 =
∑∞

i=1 λ
2
i , ‖Λ1‖1 =

∑∞
i=1 λi, and ‖Λ‖∞ = λ1. The target function LF (β) is

convex and coercive, and thus has a least one solution. As in the scalar case, the function may

have multiple solutions, but this still depends heavily on the design X and does not happen

often in practice. In the next section we will discuss how this estimate can be computed.

Interestingly, the rates of convergence for H-valued response variables are exactly the

same as those for a scalar response. This is due to our ability to extend scalar concentration

inequalities to general Hilbert spaces, see Lemma 9. If we take λ ∼
√
N log(I) then the

prediction error becomes ‖X(β̂ − β?)‖H ∼
√
I0 log(I) while the estimation error becomes

‖β̂ − β?‖`1/H ∼ I0

√
log(I)
N

. Since this result applies to any separable Hilbert space, our

methodology is applicable to a wide range of applications beyond just the GWAS we consider

here. From random fields in spatial statistics to brain imaging in fMRI studies, all fall under

this umbrella if they are embedded into a Hilbert space. As a final note, we mention that the

λ given in Theorem 4 gives a very tight control of the probability that the two inequalities

hold, however, for the convergence rates all that matters is that λ has the right order, as is

typical in LASSO style results.

4 Computational Details

Here we present several computational tools which we utilize and can be found in Matlab code

available through the corresponding authors’s website. We begin by providing computational

details for the methods in Section 3. Traditionally, when handling dense functional data,

one constructs the functional objects by utilizing basis expansions. This is the cornerstone

12



of the FDA package in R. If e1(·), e2(·), . . . is a basis of H (e.g. B-splines or Fourier), then

we can approximate LF as

LF(β) ≈ 1

2

N∑
n=1

J∑
j=1

〈Yn −X>n β, ej〉2 +
I∑
i=1

√√√√ J∑
j=1

〈βi, ej〉2,

for J large (often over one hundred). Letting Bi,j = 〈βi, ej〉 and Ynj = 〈Yn, ej〉, we have that

the above can be expressed as

1

2

N∑
n=1

J∑
j=1

(Ynj −X>n B∗j)2 +
I∑
i=1

‖Bi∗‖

=
1

2
‖Y −AF vec(B>)‖2 +

I∑
i=1

‖Bi∗‖,

where AF = X⊗ IJ×J . For large values of J , this can quickly become a substantial compu-

tational burden. However, one can use a data driven basis, such as FPCA, so that J can

be taken relatively small. However, we stress that dimension reduction is not our intent,

and thus we can choose the number of FPCs to explain nearly all of the variability of the

processes. Using such an approach, it is common to move from 200 B-spline basis functions

down to 5-10 functional principal components, with nearly no information loss. This phras-

ing now allows us to use the same group LASSO computational tools as in the sparse setting.

However, it is now possible (even in sparse data settings) that J is less than the number

observed time points, resulting in AF being smaller than A and with a far simpler form.

Since I, the number of groups (SNPs), will generally be extremely large, we implement a

screening rule that allows us to substantially reduce the potential number of groups (SNPs)

we consider when we minimize L(·) or LF(·) for some fixed λ. Using Wang et al. (2013,

Theorem 4), we do the following:

• (In parallel.) For each SNP i, define Ai ∈ R
∑
nMn×J when using the sparse algorithm

with entries

(Ai)nm,j = Xniej(tnm) .

For the dense algorithm define Ai ∈ RNJ×J as Ai = X(i) ⊗ IJ×J , and compute∥∥A>i Y ∥∥2 and ‖Ai‖F .

• Find any λ0 ≥ maxi
∥∥A>i Y ∥∥2. At penalty parameter λ0, the group LASSO solution

will be B̂λ0 = 0.

• For any λ < λ0, according to Wang et al. (2013),

1

λ0

∥∥A>i Y ∥∥2 +

(
1

λ
− 1

λ0

)
‖Ai‖F ‖Y ‖2 < 1 =⇒ (B̂λ)i∗ = 0 .

13



Therefore, if our aim is to apply a convex optimizer to solve the group LASSO problem

with at most s SNPs, then after finding λ0 = maxi
∥∥A>i Y ∥∥2 we can choose any λ sufficiently

large so that no more than s SNPs violate the inequality above. SNPs which do violate

the above are then dropped since they will not enter the solution path. This allows us to

make a substantial reduction in the number of predictors. In our simulations and application

we could handle on the order of 10000 SNPs jointly when fitting the FS-LASSO using the

ADMM procedure, with the sparse tools requiring around 30gb of RAM, and the smooth

requiring around 4gb. By using this screening rule, we can reduce millions of predictors to

tens of thousands, and then do a final fit using any number of convex optimization routines.

Finally, we mention the choice of the smoothing parameter λ. In our simulations we utilize

the BIC, though we include several other options in the application section. We calculate

the BIC as

log(σ̂2)
∑

Mn + JIactive log(N) or log(σ̂2)NMpc +MpcIactive log(N),

for the sparse and dense methods respectively. Here Iactive is the number of predictors in the

current model. The error σ̂2 is calculated as

1∑
Mn

∑
n

∑
m

(Yn(tnm)− Ŷn(tnm))2 or
1

NMpc

∑
n

∑
j

(Ynj − Ŷnj)2,

for the sparse and dense methods respectively. The predicted values are computed by recom-

puting the corresponding least squares estimates, to eliminate the effect of the bias. Given

the dependence in the data, the BIC is an adequate, though not optimal choice. Further

work is needed on tuning parameter selection for functional models, but we leave this for

future research. Fitting the model for a grid of values for λ can be done relatively quickly

by utilizing a warm start, i.e. using the previous solution for a particular λ value as the

starting point for finding the next solution.

5 Simulations

In this section we present a simulation study to compare the performance of the discussed

methods. The predictors, Xni, are generated from a normally distribution with Cov(Xni, Xn′j) =

1n=n′ρ
|i−j|, which is an autoregressive covariance with the rate of decay controlled by ρ (with

independence across subjects, i.e. Xn∗ and Xn′∗ are independent for n 6= n′). We mention

that in our genetic application the predictors take values 0/1/2 and are thus not normal.

Additional simulations using Binomial predictors can be found in Appendix A, and while the

performance of all of the methods presented here decrease, the relative conclusions from com-

paring the methods stay the same, we thus focus on the normal case here. We take I = 1000

and I0 = 10. The nonzero functions {βi(t) : t ∈ [0, 1]} are randomly generated from the

Matérn process with parameters (0, I−10 , 1/4, 0, 5/2) and the errors {εn(t) : t ∈ [0, 1]} are gen-

erated in the same way but with parameters (0, 1, 1/4, 0, 3/2), which results in errors that
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are less smooth than the parameter functions. The Matérn process is very flexible family of

stationary processes which produce more realistic structures for biological applications, as

compared to Brownian motion or simple low dimensional structures. Each subject is observed

at 10 uniformly distributed locations which differ by curve. We consider N = 50, 100, 200

and ρ = 0.5 and 0.75, and use 1000 repetitions of each scenario. For the functional method,

FPCA is carried out using the PACE package in Matlab. For the sparse method we use

cubic Bsplines with J = 30.

To compare the methods without having to worry about tuning parameter selection, we

examine smoothed ROC curves which give the proportion of true positives found as a function

of the false positives. The curves for all scenarios are given in Figure 1. Surprisingly, the

ROC curves for the two method are about the same, meaning that in terms of variable

selection the sparse and functional methods have nearly equivalent performance on average,

though, as we will see in the application section, for a single iteration they can still disagree

on the selected subset. Next we examine the average prediction error in Figure 2, with the

penalty parameters chosen by BIC, AIC, and 2-fold cross validation. There we see that the

sparse method has an advantage, though this decreases for large sample sizes. The BIC and

AIC perform about the same, while the CV criteria seems to perform the worst. We note

that, since the prediction error compares linear combinations of the parameter estimates, we

use it as a single number proxy summarizing the estimation error as well, though clearly if

there were particular patterns for β(t) one was interested in examining (linear, sinusoidal,

etc.), it would be interesting to include them in the simulations and examine their estimation

error, however we don’t purse this further here.
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Figure 1: ROC curves comparing the smooth and sparse methods.

Next we compare to two forms of scalar LASSO, one which “time-corrects” by incorporat-

ing a nonparametric estimate of the mean (TC-LASSO) and one which does not. Using the

nonparametric smoother is an attempt to account for the non-stationarity of the processes.

The resulting ROC curves are given in Figure 3 for ρ = 0.5 and ρ = 0.75, with the solid

lines indicating scalar LASSO and the dashed lines the time-corrected version. Examining

the plots we see a potentially interesting pattern. For smaller false positive rates, LASSO

is actually doing better than FS-LASSO (Figure 1). However, as one moves along the x-
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Figure 2: Prediction error and computation times for smooth and sparse methods. The top

row is the MSE and computation time for the BIC, while the first panel on the second row is

the MSE for AIC, and the second panel on the second row is the MSE for cross-validation.

axis (the false positive rate), the neither version of LASSO changes much, while FS-LASSO

quickly tops out, finding all significant predictors. This suggests that LASSO is able to find

a subset of predictors rather quickly, likely those which do not vary much over time, but is

unable to capture the more complex signals. Surprisingly, incorporating a nonparametric

estimate of the mean (TC LASSO) actually results in a large decrease in power. This further

supports the need for FS-LASSO, if one believes there is nonlinear structure in the data,

then patching LASSO is substantially worse than moving to a functional framework.

As a final comparison of statistical performance, we examine the sensitivity of the sparse

FS-LASSO on the choice of J . We consider J = 27 and J = 33, which constitutes a 10%

change in the number of basis functions. The resulting MSE curves are given in Figure 4.

Unfortunately, there does appear to be some sensitivity in the performance of FS-LASSO

relative to the number of basis functions. While J = 33 and J = 27 perform similarly, both

are slightly worse than J = 30, and in fact, worse than the smoothing algorithm. This can be

remedied by also choosing the number of basis functions by BIC, AIC, or CV, or by using the

smoothing method to select the predictors. Namely, one would ideally like to use the penalty

to also control the level of smoothing (not just the selection of the predictors). FS-LASSO

behaves very similarly to a ridge regression on the selected predictors, but a penalty which

acts more like a smoother would likely perform better (at least in terms of MSE). However,
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Figure 3: ROC curves for scalar LASSO with (TC LASSO) and without (LASSO) a non-

parametric estimate of the mean.

we do not explore this further here as this is an important topic of further research.
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Figure 4: Mean squared prediction error for sparse FS-LASSO with differing numbers of

basis functions.

Lastly, we mention computation time and memory. Methods which scale well are critical

for applications such as genetic association studies. There, one needs to work with millions

of predictors and both computation time and memory become major issues. On a desktop

computer, the sparse method presented here can be applied with predictors of the order of

10,000 or so, but not much higher. The smoothing method, which allows for the inclusion

of an FPCA, can be applied with predictors of the order of 20,000. On clusters these

numbers can be increased depending on the available memory. In Figure 2 we plot average

computation times for the two methods when taking I = 10000, but keeping everything

else the same. We see that the smooth method has a substantial edge in computation time,

resulting in shorter times which also scale better with sample size.
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Figure 5: Left Panel: Systolic blood pressure as a function of age from the FHS. The red

line is a local linear smoother estimating the mean. Right Panel: Plot of estimated effect

for SNP rs10439990 using the ‘smooth’ algorithm (blue) and the ‘sparse’ algorithm (red).

6 Framingham Heart Study

The Framingham Heart Study, FHS, is a long term longitudinal study with the goal of bet-

ter understanding the risk factors for heart disease. Genome–wide SNP data and phenotype

information were downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/gap) study acces-

sion phs000007.v25.p9. The study consists of three cohorts of subjects with the first cohort

recruited in 1958. FHS has had a tremendous impact on our understanding of health and

risk factors for heard disease. Since a full account would take far too much space, we refer the

interested reader to O’Donnell and Elosua (2008); Mahmood et al. (2014); Chen and Levy

(2016) for details on different findings and impacts due to FHS. Here we examine the second

cohort which consists of 1924 subjects. Each subject contributed up to 7 clinical exams over

29 years, though some subjects passed away during the study and contributed less. The sub-

jects were genotyped using the Illumina Omni 5M platform resulting in approximately 4.3

million SNPs genotyped. Our goal here is to find a subset of SNPs impacting systolic blood

pressure, a primary risk factor for heart disease. As an illustration, in Figure 5 we plot all

of the blood pressure measurements versus age and include a local linear smoother. We see

that (as is well known) blood pressure increase monotonically, though nonlinearly, with age.

When we combine this fact with the high within-subject correlation of blood pressure, we see

that scalar procedures such as LASSO are inappropriate. When applying our procedures,

we first remove the effects of gender, height, and HDL cholesterol levels nonparametrically

using a local linear smoother.

Due to the size of the data, we cannot apply the methods to the entire set jointly. We

thus first use our method to screen the number of predictors down to a computationally

manageable size. One could take the top performers from marginal regression, but instead

we use our procedure to rank the SNPs according to when they enter the model (as one
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varies the tuning parameter), and take the top ones. First, we divide up the genome into

segments of 10K SNPs for the sparse methods and 20K for the smooth. Using our algorithm,

we rank the SNPs in each segment according to the order in which they enter the model

(as one decreases the tuning parameter). We take the top ranking SNPS so that, when

pooled, we have screened down to approximately 10K SNPs for the sparse and 20K for the

smooth. A final application of our methods are applied to these SNPs with the smoothing

parameter chosen in four different ways: AIC, BIC, extended BIC with parameter 0.2, and

2-fold cross-validation. The top SNPs for each method are presented in Table 6. As we can

see, the smoothing method has found substantially more significant SNPs than the sparse.

However, there were 4 candidates which appeared in both lists. Given how similar the sparse

functional methods compared in simulations, it might at first be surprising that they only

overlap on four SNPs, however, given the huge number of predictors, it seems reasonable

that there would be substantial differences between the two. As an illustration, in Figure

5, we provide a plot of one of the estimated SNPs, rs10439990, which was selected using

both algorithms. There we see that the effect is negative, meaning that a subject with one

or two copies of the mutation has a lower chance of having high blood pressure. However,

the effect is not constant over time as it starts lower a younger ages, 20-40, and rises as

subjects age, peaking around 70 or so. While the two methods produce similar plots, they

disagree on the magnitude of the effect later in life, with the sparse algorithm indicating

that the protection is essentially gone, while the smooth algorithm indicates the protection

is still present, though diminished. However, we stress that the two submodels selected

were different, and thus the difference in estimates could be due in part to having different

predictors. This plot also illustrates a cautionary note about interpreting endpoints. With

so few observations at the ends, it is safer to focus interpretations on sections with the most

observations.

Quantifying the uncertainty of the output from these types of high-dimensional procedures

is an ongoing area of research even in the scalar setting. However, to test if either method is

dramatically over fitting, we also applied a 10-fold cross-validation to compare the predictive

performance between the sparse and smooth method. The resulting values were 0.00961 for

the sparse approach and 0.00972 for the smooth approach, thus showing that the sparse

approach is doing a slightly better job in terms of prediction. Given the inherently sparse

nature of the data, it is maybe surprising that the smooth approach was still so close in terms

of prediction. Regardless, as is now common in genetic studies, a follow up on a separate

data set would be required to validate the results. Note that for serious follow up studies,

it would be useful to extend techniques such as Shi (2015) to the functional setting, which

attempt to recover some of the relatively small effects that LASSO style procedures shrink

to zero. This is especially useful in genetic studies as the effect sizes are relatively small.

Lastly, an extension incorporating dependence between curves would useful as the FHS data

included some related individuals, though we do not pursue this further here.

As a final form of validation, we examined the different association results found in the

literature for our selected SNPs. This was accomplished using GWAS Central, http://www.
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gwascentral.org/index, which provides a searchable database of GWAS results. There

were at least a few results that validate some of our findings. In particular, SNP rs10439990

is located the gene ZBTB20, which has been associated with Triglyceride levels (Kathiresan

et al., 2007), a common risk factor for heart disease. SNP kgp29965466 is located on the

gene ATRNL1, which is associated with several negative health outcomes and indicators

including nicotine dependence (Bierut et al., 2007). SNP rs10497371 is on gene MYO3B,

which has been associated with Diabetes (Scott et al., 2007). Lastly SNP rs7692492 is on

gene FAM190A, which has been associated with coronary heart disease (Samani et al., 2007;

Larson et al., 2007).

Top SNPs selected by sparse algorithm Top SNPs selected by smooth algorithm

Chromosome, Name AIC BIC EBIC CV Chromosome, Name AIC BIC EBIC CV

2, rs3845756 1, kgp5933154

2, rs6414023 1, rs17107710

2, rs10497371 2, kgp5982336

3, rs10439990 3, kgp26868438

4, rs7692492 3, rs10439990

5, kgp30202888 3, kgp11928513

7, kgp3808198 5, kgp30202888

7, kgp4510449 7, kgp3808198

8, kgp8137960 7, kgp4510449

9, rs1702645 10, kgp29965466

12, rs978561 11, kgp10123049

13, rs1924783 12, kgp6953877

15, kgp6228266 12, rs10859106

Figure 6: Top SNPs selected by the Sparse Algorithm and by the Smooth Algorithm. Gray

boxes indicated the SNP is selected when using the corresponding variable selection criteria.

Red indicates SNPs which were chosen by both the smooth and sparse methods.

7 Conclusion

We have provided powerful new tools for analyzing functional or longitudinal data with a

large number of predictors. In the sparse case we provided new theory in the form of a

restricted eigenvalue condition and accompanying asymptotic theory. While phrased as a

functional data method, the sparse case is closely related to varying coefficient models, and

thus this work can be viewed as an extension of the work in Wei et al. (2011). In the

dense case, we provide a completely new methodology and accompanying asymptotic theory

which allows the response functions to take values from any separable Hilbert space. Such

generality means the methods can be applied to a variety of settings including traditional

20

http://www.gwascentral.org/index
http://www.gwascentral.org/index


functional outcomes, functional panels, spatial processes, and image data such as fMRI. We

also provide accompanying computer code which takes advantage of the structure of group

LASSO so that our methods can be applied efficiently.

Our simulations suggest that the choice between sparse and smooth tool sets is not straight-

forward. The simulations were done in a traditionally sparse setting, but the two methods

were nearly equivalent in terms of variable selection and the functional method required

far fewer computational resources. However, estimation accuracy was better for the sparse

methods. This opens the door to future work which could involve multistage methods where

selection is done via smooth methods and estimation via sparse methods.

While our methods perform well, they also highlight the need for better tuning parameter

selection methods. Methods such as BIC and cross-validation can be applied in this setting

with good results, but such methods are not tailored to the dependence inherent in functional

data, and we hope to investigate possible adaptations to these selection criteria for the

functional setting in future work.
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A Binomial Simulations

Here we carry out a nearly identical simulation study as in Section 5 except the normally

distributed predictors are replaced with Bin ∼ Binom(2, pi) random variables to more closely

emulate the structure of the application. To generate Bin which are correlated, we use a

probit model based on the the same simulation structure as in Section 5; we take those

normal random variables as the input in probit model where pi = logit−1(Xin). The MSE

curves are summarized in Figure 7. If we compare these results with those from the bottom

right panel from Figure 2, here we also use CV, we see that the pattern is very similar. The

error does not change dramatically between the two correlations, but the sparse method has

a noticeably lower MSE.
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Figure 7: MSE curves comparing the smooth and sparse methods with Binom(2, 1/2) pre-

dictors. Tuning parameter is selected with cross-validation.

B Proofs for Section 2

B.1 Proof of Theorem 1

Our analysis for this Theorem closely follows standard techniques for sparse and group sparse

regression under restriced eigenvalue conditions, such as the work by Lounici et al. (2011)

and Bickel et al. (2009).

Recall that B̂ is a minimizer of

L(B) =
1

2
‖Y −A vec(B>)‖22 + λ‖B‖`1/`2 .

Then in particular, we must have L(B̂) ≤ L(B?), that is,

1

2
‖Y −A vec(B̂>)‖22 + λ‖B̂‖`1/`2 ≤

1

2
‖Y −A vec(B?>)‖22 + λ‖B?‖`1/`2 .

After rearranging some terms,

1

2
‖A vec(B̂> −B?>)‖22 ≤

〈
Y −A vec(B?>),A vec(B̂> −B?)

〉
+ λ

(
‖B?‖`1/`2 − ‖B̂‖`1/`2

)
.
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Let S0 ⊂ [I] indicate the row support of B?, with |S| ≤ I0. Write ∆ = B̂ − B?. Then

standard arguments show that

‖B?‖`1/`2 − ‖B̂‖`1/`2 ≤ ‖∆S0‖`1/`2 − ‖∆Sc0
‖`1/`2 .

Furthermore,〈
Y −A vec(B?>),A vec(B̂> −B?>)

〉
=
〈
A>

(
Y −A vec(B?>)

)
, vec(∆>)

〉
=
∑
i

〈
A>i

(
Y −A vec(B?>)

)
,∆i,∗

〉
≤
∑
i

(∥∥A>i (Y −A vec(B?>)
)∥∥

2
· ‖∆i,∗‖2

)
≤ max

i

∥∥A>i (Y −A vec(B?>)
)∥∥

2
· ‖∆‖`1/`2 ,

where Ai is the matrix with entries (Ai)nm,j = Anm,ij = Xni · ej(tnm).

Consider the event λ ≥ 2 maxi
∥∥A>i (Y −A vec(B?>)

)∥∥
2
. On this event, we would then

have

1

2
‖A vec(∆>)‖2 ≤ ‖∆‖`1/`2 ·max

i

∥∥A>i (Y −A vec(B?>)
)∥∥

2
+ λ

(
‖∆S0‖`1/`2 − ‖∆Sc0

‖`1/`2
)

≤ ‖∆S0‖`1/`2 · 1.5λ− ‖∆Sc0
‖`1/`2 · 0.5λ .

Since the left-hand side is nonnegative, therefore, ‖∆Sc0
‖`1/`2 ≤ 3‖∆S0‖`1/`2 . Applying the

REgroup(I0, α) condition, then,

‖A vec(∆>)‖2 ≥ Nα ‖∆‖2F .

Combining everything,

1

2
Nα ‖∆‖2F ≤

1

2
‖A vec(∆>)‖2 ≤ ‖∆S0‖`1/`2 · 1.5λ− ‖∆Sc0

‖`1/`2 · 0.5λ ≤ ‖∆S0‖`1/`2 · 1.5λ .

For the Frobenius norm result, we further write

‖∆S0‖`1/`2 · 1.5λ ≤
√
|S0| · ‖∆S0‖F · 1.5λ ≤

√
|S0| · ‖∆‖F · 1.5λ

and so

‖∆‖F ≤
√
|S0| · 1.5λ ·

2

Nα

while for the `1/`2-norm result we have

‖∆‖`1/`2 = ‖∆S0‖`1/`2 + ‖∆Sc0
‖`1/`2 ≤ 4‖∆S0‖`1/`2 ≤ 4

√
|S0|‖∆S0‖F ≤ 4

√
|S0|‖∆‖F .

This proves the theorem, as long as we can show that with high probability,

λ ≥ 2 max
i

∥∥A>i (Y −A vec(B?>)
)∥∥

2
.
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To prove this, take any i ∈ [I]. Then

‖A>i
(
Y −A vec(B?>)

)
‖2 = ‖A>i (T + ε) ‖2 ≤ ‖A>i T‖2 + ‖A>i ε‖2 ,

where T is the truncation error defined earlier while ε has entries εnm = εn(tnm). Now we

bound the two pieces separately. First, we bound the operator norm of Ai. By definition,

(Ai)nm,j = Xni · ej(tnm) and so we have

A>i Ai =
∑
n

X2
niE

>
nEn � ‖X‖2∞

∑
n

E>nEn = ‖X‖2∞ ·N · F ,

proving that ‖Ai‖op ≤ ‖X‖∞ ·
√
N‖F‖op. Then

‖A>i T‖2 ≤ ‖Ai‖op · ‖T‖2 ≤ ‖X‖∞ ·
√
N‖F‖op · ‖T‖2 .

Next, to bound ‖A>i ε‖2, observe that A>i ε ∼ N(0,A>i ΣAi), where where Σ is a block-

diagonal matrix with blocks given by Σ1, . . . ,ΣN . Then, applying (Hsu et al., 2011, Propo-

sition 1.1),

P
{
‖A>i ε‖22 > trace(A>i ΣAi) + 2

√
trace((A>i ΣAi)2) · t+ 2‖A>i ΣAi‖op · t

}
≤ e−t

for any t ≥ 0. Since trace(M) ≤ J‖M‖op for any J×J matrix, and using the simple identity

2
√
Jt ≤ J + t, we simplify this to the weaker statement

P
{
‖A>i ε‖22 > ‖A>i ΣAi‖op · (2J + 3t)

}
≤ e−t

We calculate

‖A>i ΣAi‖op ≤ ‖Ai‖2op · ‖Σ‖op ≤ ‖X‖
2
∞ ·N‖F‖op ·max

n
‖Σn‖op .

Combining everything, and setting t = log(I/δ), for each I we have

P
{
‖A>i ε‖22 > ‖X‖

2
∞ ·N‖F‖op ·max

n
‖Σn‖op · (2J + 3 log(I/δ))

}
≤ δ

I
.

Therefore, with probability at least 1− δ, for all i = 1, . . . , I,

‖A>i ε‖22 ≤ ‖X‖
2
∞ ·N‖F‖op ·max

n
‖Σn‖op · (2J + 3 log(I/δ))

and so for all i,

‖A>i
(
Y −A vec(B?>)

)
‖2 ≤ ‖A>i T‖2 + ‖A>i ε‖2

≤ ‖X‖∞
√
N‖F‖op ·

(
‖T‖2 +

√
max
n
‖Σn‖op · (2J + 3 log(I/δ))

)
≤ λ/2 ,

as desired.
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B.2 Proof of Theorem 2

We use the Transfer Principle of Oliveira (2013, Lemma 5.1), which connects sparse eigen-

values of A to a restricted eigenvalue property for A. This result is stated for sparsity but

can be straightforwardly extended to group-sparsity. We restate the group-sparse form here

as a Lemma without proof.

Lemma 1 (Adapted from Oliveira (2013, Lemma 5.1)). Suppose A satisfies that, for any

k1-row-sparse W ∈ RI×J ,

(7)
∥∥A vec(W>)

∥∥2
2
≥ λ0 ‖W‖2F .

Then for all W ∈ RI×J ,∥∥A vec(W>)
∥∥2
2
≥ λ0 ‖W‖2F −

maxi ‖Ai‖2op · ‖W‖
2
`1/`2

k1 − 1
.

To apply this result to our work, we need to first find a λ0 such that (7) is satisfied (with

high probability), and then we need to compute a bound (holding with high probability) on

each ‖Ai‖op.

Step 1: finding λ0 for condition (7) We first give another lemma, proved below:

Lemma 2. Suppose that the assumptions of Theorem 2 hold, and take any fixed sequence

{En} satisfying (4). Choose any δ > 0 and any k1 ≥ 1. Then there are constants a1, a2 > 0

depending only on ν, λmin(Σ), γ0, γ1, such that if

(8) N ≥ a1(k1J + k1 log(I) + log(1/δ)),

then with probability at least 1− δ/2, for all k1-row-sparse W,∑
n

∥∥E>nW>Xn

∥∥
2

N
√

trace(W>ΣW)
≥ a2 .

To apply these results to our work, first note that by Lemma 2, if N satisfies (8), then

with probability at least 1− δ/2, for all k1-sparse W (where we specify k1 later),

‖A · vec(W)‖22 =
∑
n

∥∥E>nW>Xn

∥∥2
2
≥ 1

N

(∑
n

∥∥E>nW>Xn

∥∥
2

)2

≥ N trace(W>ΣW) · (a2)2 .

In particular, the assumption (7) in Lemma 1 holds with λ0 = N(a2)
2λmin(Σ).

Step 2: bounding ‖Ai‖op Next we bound maxi ‖Ai‖2op. From the proof of Theorem 1, we

know that ‖Ai‖2op ≤ ‖X‖
2
∞ ·N ‖F‖op, where F = 1

N

∑
n E>nEn. By (4), we see that ‖F‖op ≤

γ21 . Furthermore, Xij is mean zero and ν-subgaussian, and so, by standard subgaussian tail

bounds, with probability at least 1− δ/2,

‖X‖∞ = max
ni
|Xni| ≤ ν

√
2 log(4IJ/δ) .
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Step 3: applying Lemma 1 Combining the results from Step 1 and Step 2, and applying

Lemma 1, we see that with probability at least 1− δ, for all W ∈ RI×J ,

∥∥A vec(W>)
∥∥2
2
≥ N

[
(a1)

2λmin(Σ) · ‖W‖2F −
2ν2 log(4IJ/δ) · γ21 · ‖W‖

2
`1/`2

k1 − 1

]
.

For any W with ‖WSc‖`1/`2 ≤ 3 ‖WS‖`1/`2 (where |S| ≤ k), we then have

‖W‖`1/`2 ≤ 4 ‖WS‖`1/`2 ≤ 4
√
k ‖WS‖F ≤ 4

√
k ‖W‖F ,

and so the result above gives∥∥A vec(W>)
∥∥2
2
≥ N ‖W‖2F

[
(a2)

2λmin(Σ)− 2ν2 log(4IJ/δ) · γ21 · 16k

k1 − 1

]
.

Taking

k1 ≥ 1 +
2ν2 log(4IJ/δ) · γ21 · 16k

0.5(a2)2λmin(Σ)
,

we obtain ∥∥A vec(W>)
∥∥2
2
≥ N ‖W‖2F · 0.5(a2)

2λmin(Σ)

for all W ∈ RI×J with ‖WSc‖`1/`2 ≤ 3 ‖WS‖`1/`2 for any |S| ≤ k, as desired. The sample

size requirement (5) in Theorem 2 ensures that the sample size assumption in Lemma 2 will

hold for the specified choice of k1.

B.2.1 Proof of Lemma 2

For the proof of this lemma, we’ll need several supporting lemmas, proved below. The first

lemma shows that
∑

n

∥∥E>nW>Xn

∥∥
2

satisfies upper and lower bounds with high probability

for any fixed single matrix W.

Lemma 3. For any fixed W,

P

{
c1 ≤

∑
n

∥∥E>nW>Xn

∥∥
2

N
√

trace(W>ΣW)
≤ c2

}
≥ 1− 2e−c3N ,

where c1, c2, c3 > 0 depend only on ν, λmin(Σ), γ0, γ1.

The next lemma shows that proving a lower bound on
∑

n

∥∥E>nW>Xn

∥∥
2

over all row-

sparse W can be reduced to proving a lower bound on a finite covering set. This result

is a simple extension of Baraniuk et al. (2008, Lemma 5.1), from the sparse setting to the

group-sparse setting, and so we do not give the proof here.

Lemma 4 (Adapted from Baraniuk et al. (2008, Lemma 5.1)). Let

W =
{
W ∈ RI×J : W is k1-row-sparse, trace(W>ΣW) = 1

}
.
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Let f(W) be any seminorm (that is, f(c ·W) = |c| · f(W) and f(W1 + W2) ≤ f(W1) +

f(W2)). Choose any ε ∈ (0, 1/2). Then there exists W ′ ⊂ W with |W ′| ≤ Ik1(3/ε)k1J such

that

inf
W∈W

f(W) ≥ inf
W∈W ′

f(W)− ε

1− ε
sup

W∈W ′
f(W) .

Proof of Lemma 2. By Lemma 3, for any fixed W, with probability at least 1− 2e−c3N ,

c1 ≤
∑

n

∥∥E>nW>Xn

∥∥
2

N
√

trace(W>ΣW)
≤ c2

where c1, c2, c3 > 0 depend only on ν, λmin(Σ), γ0, γ1. Now choose ε = c1
4c2

. In the notation

of Lemma 4, let f(W) =
∑

n

∥∥E>nW>Xn

∥∥
2
, and take W ′ as in the lemma. Since |W ′| ≤

Ik1(3/ε)k1J , the above bound is true for all W ∈ W ′ with probability at least

1− 2e−c3N+log(Ik1 (3/ε)k1J ) ≥ 1− δ/2,

by our lower bound N ≥ a1(k1J + k1 log(I) + log(1/δ)) as long as the constant a1 is chosen

appropriately. Next, applying Lemma 4, for all W ∈ W ,∑
n

∥∥E>nW>Xn

∥∥
2

N
√

trace(W>ΣW)
≥ c1 −

ε

1− ε
· c2 ≥

c1
2
.

After defining a2 = c1/2, this proves the lemma.

B.2.2 Proof of Lemma 3

We begin by stating a supporting lemma.

Lemma 5. Let B1 ∈ RM1×d, . . . , BN ∈ RMN×d be fixed matrices with

N∑
n=1

‖Bn‖F ≥ c1N

and √√√√ N∑
n=1

‖Bn‖2F ≤ c2
√
N

for some c1, c2 > 0. Let X1, . . . , XN ∈ Rd be iid random vectors with E [Xn] = 0 and

E
[
XnX

>
n

]
= Id, which are σ-subgaussian, meaning that E

[
ev
>Xn
]
≤ eσ

2‖v‖22/2 for all fixed

v ∈ Rd. Then

P

{
c3N ≤

N∑
n=1

‖BnXn‖2 ≤ c4N

}
≥ 1− 2e−c5N ,

where c3, c4, c5 > 0 depend only on c1, c2, σ.
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Proof of Lemma 3. First we calculate∑
n

∥∥E>nW>Σ1/2
∥∥2
F

=
∑
n

trace(E>nW>ΣWEn)

= trace(Σ1/2W(
∑
n

EnE
>
n )W>Σ1/2) ≤ trace(Σ1/2WW>Σ1/2) ·N

∥∥∥∥∥ 1

N

∑
n

EnE
>
n

∥∥∥∥∥
= trace(W>ΣW) ·N

∥∥∥∥∥ 1

N

∑
n

EnE
>
n

∥∥∥∥∥ ≤ γ1Ntrace(W>ΣW) .

And,∑
n

∥∥E>nW>Σ1/2
∥∥
F

=
∑
n

√∑
i

‖(Σ1/2W)i,∗En‖22 ≥
∑
n

∑
i

∥∥(Σ1/2W)i,∗
∥∥
2√

trace(W>ΣW)

∥∥(Σ1/2W)i,∗En

∥∥
2

≥ γ0N
∑
i

∥∥(Σ1/2W)i,∗
∥∥2
2√

trace(W>ΣW)
= γ0N

√
trace(W>ΣW) .

Now, writing X̃n = Σ−1/2Xn and defining

Bn =
E>nW>√

trace(W>ΣW)
,

we see that the X̃n’s are iid with mean zero, identity covariance, and are ν/
√
λmin(Σ)-

subgaussian. And,
∥∥E>nW>Xn

∥∥
2

=
√

trace(W>ΣW) ·
∥∥∥BnΣ1/2X̃n

∥∥∥
2
. Applying Lemma 5,

then, for some constants c1, c2, c3 depending only on ν, λmin(Σ), γ0, γ1,

P

{
c1N

√
trace(W>ΣW) ≤

∑
n

∥∥E>nW>Xn

∥∥
2
≤ c2N

√
trace(W>ΣW)

}
≥ 1− 2e−c3N .

B.2.3 Proof of Lemma 5

Before we prove Lemma 5, we first state two additional supporting lemmas, proved below:

Lemma 6. Let x ∈ RN be a vector with ‖x‖1 ≥ c1N , ‖x‖2 ≤ c2
√
N . Then∣∣∣{n : |xn| ≥

c1
2

}∣∣∣ ≥ (c1)
2

4(c2)2
N.

Lemma 7. Suppose Z1, . . . , ZN are independent non-negative random variables with E [(Zn)2] ≥
a1 and E

[
e(Zn)

2
]
≤ a2 for all n = 1, . . . , N , where a1, a2 > 0. Then

P

{∑
n

Zn < a3N

}
≤ e−a4N and P

{∑
n

(Zn)2 > a5N

}
≤ e−a6N

where a3, a4, a5, a6 > 0 are constants depending only on a1, a2.
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Now we prove Lemma 5.

Proof of Lemma 5. For each n, define Zn =
‖BnXn‖2
2σ‖Bn‖F

. We have

E
[
‖BnXn‖22

]
= E

[
X>n B

>
nBnXn

]
= E

[
trace(B>nBnXnX

>
n )
]

= trace(B>nBn) = ‖Bn‖2F ,

and so E [(Zn)2] = 1
4σ2 =: a1. Next, it is known from Hsu et al. (2011, Remark 2.3) that

E
[
eη‖BnXn‖

2
2

]
≤ σ2 trace(B>nBn)η +

σ4 trace((B>nBn)2)η2

1− 2σ2 ‖B>nBn‖ η

for all 0 ≤ η < 1

2σ2‖B>n Bn‖ . Using basic facts about matrix norms we have
∥∥B>nBn

∥∥ =

‖Bn‖2 ≤ ‖Bn‖2F and trace(B>nBn) = ‖Bn‖2F and trace((B>nBn)2) =
∥∥(B>nBn)2

∥∥2
F
≤
∥∥B>nBn

∥∥4
F
.

Setting η = 1
4σ2‖Bn‖2F

we obtain

E
[
e(Zn)

2
]

= E
[
e‖BnXn‖

2
2/(4σ

2‖Bn‖2F)
]
≤ e3/8 =: a2.

Applying Lemma 7 to {Zn : n = 1, . . . , n}, we see that for constants a5, a6 > 0 depending

only on a1, a2,

P

{∑
n

‖BnXn‖22
4σ2 ‖Bn‖2F

≤ a5N

}
≥ 1− e−a6N .

Furthermore, setting I = {n : ‖Bn‖F ≥ c1/2}, by applying Lemma 6 to the vector

(‖Bn‖F)n=1,...,N , we see that |I| ≥ (c1)2

4(c2)2
N . Applying Lemma 7 to {Zn : n ∈ I} we see that

for constants a3, a4 > 0 depending only on a1, a2,

P

{∑
n∈I

‖BnXn‖2
2σ ‖Bn‖F

≥ a3|I|

}
≥ 1− e−a4|I| ≥ 1− e−a4

(c1)
2

4(c2)
2N .

Next, assume these events hold. We have

∑
n

‖BnXn‖2 =
∑
n

‖BnXn‖2
‖Bn‖F

· ‖Bn‖F ≤

√√√√∑
n

‖BnXn‖22
‖Bn‖2F

·
√∑

n

‖Bn‖2F ≤ 2σ
√
a5N · c2

√
N.

Furthermore,∑
n

‖BnXn‖2 ≥
∑
n∈I

‖BnXn‖2 =
∑
n∈I

2σ ‖Bn‖F ·
‖BnXn‖2
2σ ‖Bn‖F

≥ c1 ·
∑
n∈I

‖BnXn‖2
2σ ‖Bn‖F

≥ c1 · a3|I| ≥ c1 · a3 ·
(c1)

2

4(c2)2
N .

Setting

c3 = c1 · a3 ·
(c1)

2

4(c2)2
, c4 = 2σc2

√
a5, c5 = min

{
a6, a4

(c1)
2

4(c2)2

}
,

we have proved the lemma.
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Finally, we prove the two supporting results, Lemmas 6 and 7.

Proof of Lemma 6. We have

c1N ≤
N∑
n=1

|xn| =
N∑
n=1

|xn| · 1 {|xn| ≥ c1/2}+
N∑
n=1

|xn| · 1 {|xn| < c1/2}

≤
N∑
n=1

|xn| · 1 {|xn| ≥ c1/2}+N · c1/2

≤

√√√√ N∑
n=1

|xn|2 ·

√√√√ N∑
n=1

1 {|xn| ≥ c1/2}2 +N · c1/2

≤ c2
√
N ·

√
|{n : |xn| ≥ c1/2}|+N · c1/2,

and therefore, |{n : |xn| ≥ c1/2}| ≥ (c1)2

4(c2)2
N .

Proof of Lemma 7. For the upper bound, we have

P

{∑
n

(Zn)2 > 2a2N

}
≤ E

[
e
∑
n(Zn)

2−2a2N
]

=

(∏
n

E
[
e(Zn)

2
])
· e−2a2N = e−a2N .

For the lower bound, we have, for each n,

a1 ≤ E
[
(Zn)2

]
= E

[
(Zn)0.5(Zn)1.5

]
≤
√

E [Zn] ·
√
E [(Zn)3] since Zn ≥ 0

≤
√

E [Zn] · 4
√
E [(Zn)6] ≤

√
E [Zn] · 4

√
E [6e(Zn)2 ] ≤

√
E [Zn] · 4

√
6a2

and so E [Zn] ≥ a21√
6a2

. Next, taking any t ∈ [0, 1],

E
[
e−tZn

]
= 1− tE [Zn] +

∑
k≥2

(−1)ktkE
[
(Zn)k

]
k!

≤ −tE [Zn] +

(
1 +

∑
k≥1

t2kE
[
(Zn)2k

]
(2k)!

)
by removing negative terms

= −tE [Zn] + E
[
et

2(Zn)2
]

since k! ≤ (2k)!

≤ −tE [Zn] + E
[
t2e(Zn)

2

+ (1− t2) · 1
]

by convexity of z 7→ ez

≤ 1− t a21√
6a2

+ t2(a2 − 1).

Setting t = min
{

1,
a21

2(a2−1)
√
6a2

}
we get

E
[
e−tZn

]
≤ 1− t (a1)

2

2
√

6a2
≤ e

−t (a1)
2

2
√

6a2 .
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Then

P

{∑
n

Zn <
(a1)

2

4
√

6a2
N

}
≤ E

[
e
tN

(a1)
2

4
√

6a2
−t

∑
n Zn
]

= E
[
e
tN

(a1)
2

4
√

6a2

](∏
n

E
[
e−tZn

])
= e

tN
(a1)

2

4
√

6a2
−tN (a1)

2

2
√

6a2 = e
−tN (a1)

2

4
√

6a2 .

Setting

a3 =
(a1)

2

4
√

6a2
, a4 = min

{
1,

a21
2(a2 − 1)

√
6a2

}
· (a1)

2

4
√

6a2
, a5 = 2a2, a6 = a2,

we have proved the lemma.

C Proofs for Section 3

We begin this section with the proof of Theorem 3. After, we will divide the proof of Theorem

4 into a sequence of lemmas.

C.1 Proof of Theorem 3

Let e1, e2, . . . be an orthonormal basis of H. Then each coordinate xi of x ∈ HI , can be

expressed as

xi =
∑
k

xi,kek.

We denote xi,k ∈ R as the coordinates with respect to the e1, e2, . . . basis, and we will also

let x(k) represent the vector {x1,k, . . . , xI,k}. We can then write

‖Xx‖2H = 〈Xx,Xx〉H =
N∑
n=1

〈Xnx,Xnx〉

=
N∑
n=1

I∑
i=1

I∑
j=1

XniXnj〈xi, xj〉H

Expressing the xi with respect to the orthonormal basis e1, e2, . . . ,

=
∑
n

∑
i

∑
j

∑
k

∑
l

XniXnjxi,kxj,l〈ek, el〉

=
∑
n

∑
i

∑
j

∑
k

XniXnjxi,kxj,k

=
∑
k

x(k)>X>Xx(k)

=
∑
k

‖Xx(k)‖22.
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Note that the last norm above is simply the Euclidean norm on RN . By assumption in the

Theorem, we have that the above is bounded from below as follows:

‖Xx‖2H =
∑
k

‖Xx(k)‖22

≥
∑
k

(
c1
√
N‖x(k)‖2 − c2

√
log(I)‖x(k)‖1

)2
= (c1)

2N
∑
k

‖x(k)‖22 − 2c1c2
√
N log(I)

∑
k

‖x(k)‖2‖x(k)‖1 + (c2)
2 log(I)

∑
k

‖x(k)‖21.

Examining the first sum in this last line, we have by Parceval’s identity

‖x‖2H =
∑
i

‖xi‖2H =
∑
i

∑
k

|xi,k|2 =
∑
k

‖x(k)‖2.

For the second sum, the Cauchy-Schwartz inequality gives∑
k

‖x(k)‖2‖x(k)‖1 ≤ ‖x‖H
√∑

k

‖x(k)‖21.

So we have that

‖Xx‖2H ≥

c1√N‖x‖H − c2√log(I)

√∑
k

‖x(k)‖21

2

or equivalently

‖Xx‖H ≥ c1
√
N‖x‖H − c2

√
log(I)

√∑
k

‖x(k)‖21.

Now for the last piece observe that (by Cauchy-Schwarz)∑
k

‖x(k)‖21 =
∑
k

∑
i

∑
j

|xi,k||xj,k|

≤
∑
i

∑
j

(∑
k

|xi,k|2
)1/2(∑

k

|xj,k|2
)1/2

=

∑
i

(∑
k

|xi,k|2
)1/2

2

=

(∑
i

‖xi‖H

)2

= ‖x‖2`1/H.

We can therefore conclude that

‖Xx‖H ≥ c1
√
N‖x‖H − c2

√
log(I)‖x‖`1/H
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as claimed.

Next suppose that c1 > 4c2

√
I0 log(I)

N
. We will show that X satisfies the REF(I0, α) property

with α =

(
c1 − 4c2

√
I0 log(I)

N

)2

. To see this, take any set S with |S| ≤ I0, and any x with

‖xSc‖`1/H ≤ 3 ‖xS‖`1/H. By the Cauchy-Schwarz inequality, which relates the `1 and `2
norms of any vector (including a vector of functions xS), we have

‖xS‖`1/H ≤ ‖xS‖H ·
√
|Support(xS)| ≤ ‖xS‖H ·

√
I0.

By the triangle inequality,

‖x‖`1/H ≤ ‖xS‖`1/H + ‖xSc‖`1/H ≤ 4 ‖xS‖`1/H ≤ 4 ‖xS‖H ·
√
I0 ≤ 4 ‖x‖H ·

√
I0.

Then returning to the above,

‖Xx‖H ≥ c1
√
N‖x‖H − c2

√
log(I)‖x‖`1/H ≥ c1

√
N‖x‖H − c2

√
log(I)

(
4 ‖x‖H ·

√
I0

)
= ‖x‖H ·

√
N ·

(
c1 − 4c2

√
I0 log(I)

N

)
= ‖x‖H ·

√
αN,

proving that X satisfies the REF(I0, α) property.

C.2 Proof of Theorem 4

We follow a very similar structure to the one found in Chapter 6 of Bühlmann and Van de

Geer (2011), adapting the arguments for function spaces as needed. We break the proof into a

sequence of Lemmas which can be thought of as a basic inequality, a functional concentration

inequality, applying that inequality, a last lemma to set up the final proof. We then combine

all the lemmas to prove Theorem 4.

Lemma 8 (Basic Inequality). With probability one, we always have the inequality

1

2
‖X(β̂ − β?)‖2H + λ‖β̂‖`1/H ≤

(
max
1≤i≤I

‖ε>X(i)‖
)
‖β̂ − β?‖`1/H + λ‖β?‖`1/H.

Proof. We can set up a basic inequality using

1

2
‖Y −Xβ̂‖2 + λ‖β̂‖`1/H ≤

1

2
‖Y −Xβ?‖2 + λ‖β?‖`1/H.

We can rewrite

1

2
‖Y −Xβ̂‖2 =

1

2
‖Y −Xβ? −X(β̂ − β?)‖2

=
1

2
‖Y −Xβ?‖2 +

1

2
‖X(β̂ − β?)‖2 − 2

2
〈Y −Xβ?,X(β̂ − β?)〉.
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This gives

1

2
‖X(β̂ − β?)‖2 + λ‖β̂‖`1/H ≤ 〈Y −Xβ?,X(β̂ − β?)〉+ λ‖β?‖`1/H

=
I∑
i=1

〈ε>X(i), β̂i − β?i 〉+ λ‖β?‖`1/H

≤
I∑
i=1

‖ε>X(i)‖‖β̂i − β?i ‖+ λ‖β?‖`1/H

≤ max
1≤i≤I

‖ε>X(i)‖‖β̂ − β?‖`1/H + λ‖β?‖`1/H,

which is the desired result.

Lemma 9. Let X be an H valued Gaussian process with mean zero and covariance operator

C. Let Λ> = (λ1, λ2, . . . ) be a vector of the eigenvalues of C (in decreasing order). Then we

have the bound

P
{
‖X‖2 ≥ ‖Λ‖1 + 2‖Λ‖2

√
t+ 2‖Λ‖∞t

}
≤ exp(−t).

Proof. Using the Karhunen-Loeve expansion, we can express

‖X‖2 D=
∞∑
j=1

λjZ
2
j ,

where {Zj} are iid standard normal. Note that since X is square integrable, we have that∑
i λi = ‖Λ‖1 <∞, and therefore ‖Λ‖2 <∞ as well. Define the events, for J = 1, 2, . . .

AJ =

{
J∑
j=1

λjZ
2
j ≥ ‖Λ‖1 + 2‖Λ‖2

√
t+ 2λ1t

}
.

Since ‖Λ‖1 ≥
∑J

j=1 λj and ‖Λ‖22 ≥
∑J

j=1 λ
2
j , it follows from Lemma 1 in Laurent and Massart

(2000) that

P (AJ) ≤ exp(−t),

for all J . Since
∑J

j=1 λjZ
2
j is a strictly increasing sequence of J we have that

A1 ⊆ A2 ⊆ A3 . . .

Using the continuity from below of probability measures, we can pass the limit J → ∞ to

obtain the desired result.

Lemma 10. Assume that ε = (ε1, . . . , εN) are iid Gaussian elements of H and X is a design

matrix with standardized columns. Define the event

F =

{
max
1≤i≤I

‖ε>X(i)‖ ≤ λ0

}
37



where, for δ > 0,

λ0 =
√
N

√
‖Λ‖1 + 2‖Λ‖2

√
log(I/δ) + 2λ1 log(I/δ).

Then we have that

P (F ) ≥ 1− δ.

Proof. Notice that if {εn} are iid Gaussian with mean zero and covariance operator C, then

ε>X(i)/
√
N is also mean zero Gaussian, and the covariance operator is given by

1

N
Cov(ε>X(i)) =

1

N

N∑
n=1

Cov(εnXni) = C,

since the columns of X are standardized. Therefore, Vi = ε>X(i)/
√
N is also Gaussian with

mean zero and covariance operator C. Now apply Lemma 9 with t = − log(δ) to obtain

P

{
max
1≤i≤I

‖Vi‖2 ≥ ‖Λ‖1 + 2‖Λ‖2
√
t+ log(I) + 2‖Λ‖∞(t+ log(I))

}
≤ I exp(−(t+ log(I)) = exp(−t).

Since exp(−t) = δ, the claim holds.

Lemma 11. On F with λ ≥ 2λ0 we have that

‖X(β? − β̂)‖2 + λ‖β̂Sc0‖`1/H ≤ 3λ‖(β̂ − β?)S0‖`1/H.

Proof. Applying Lemma 8 and multiplying both sides by 2, we have that, on F ,

‖X(β? − β̂)‖2 + 2λ‖β̂‖`1/H ≤ λ‖β̂ − β?‖`1/H + 2λ‖β?‖`1/H.

Analyzing the penalty term on the LHS, we can apply the reverse triangle inequality to

obtain

‖β̂‖`1/H = ‖β̂S0‖`1/H + ‖β̂Sc0‖`1/H ≥ ‖β
?
S0
‖`1/H − ‖β̂S0 − β?S0

‖`1/H + ‖β̂Sc0‖`1/H

and on the RHS we we have

‖β̂ − β?‖`1/H = ‖β̂S0 − β?S0
‖`1/H + ‖β̂Sc0‖`1/H.

Combining these two calculations we arrive at the bound

‖X(β? − β̂)‖2 ≤λ‖β̂ − β?‖`1/H + 2λ‖β?‖`1/H − 2λ‖β̂‖`1/H
≤λ(‖β̂S0 − β?S0

‖`1/H + ‖β̂Sc0‖`1/H) + 2λ‖β?S0
‖`1/H

− 2λ(‖β?S0
‖`1/H − ‖β̂S0 − β?S0

‖`1/H + ‖β̂Sc0‖`1/H)

=3λ‖β̂S0 − β?S0
‖`1/H − λ‖β̂Sc0‖`1/H,

which is the desired result.

38



Proof of Theorem 4. We examine both terms together to obtain

‖X(β̂ − β?)‖2 + λ‖β̂ − β?‖`1/H = ‖X(β̂ − β?)‖2 + λ‖(β̂ − β?)S0‖`1/H + λ‖β̂Sc0‖`1/H.

Applying Lemmas 10 and 11 we have that, with probability 1− δ,

‖X(β̂ − β?)‖2 + λ‖(β̂ − β?)S0‖`1/H + λ‖β̂Sc0‖ ≤ 4λ‖(β̂ − β?)S0‖`1/H ≤ 4λ
√
I0‖(β̂ − β?)S0‖.

Applying Definition 3.1, we have that the RHS above is bounded by

4λ
√
I0‖(β̂ − β?)S0‖ ≤

4λ
√
I0√

αN
‖X(β? − β̂)‖ ≤ 1

2
‖X(β? − β̂)‖2 +

8λ2I0
αN

.

Note the last inequality follows from the simple bound 4uv ≤ 1
2
u2 + 8v2 for any real u and

v (the LHS just completes the square). We therefore have that

‖X(β? − β̂)‖2 + λ‖(β̂ − β?)S0‖`1/H + λ‖β̂Sc0‖`1/H ≤
1

2
‖X(β? − β̂)‖2 +

8λ2I0
αN

.

This implies
1

2
‖X(β? − β̂)‖2 + λ‖β̂ − β?‖`1/H ≤

8λ2I0
αN

,

which proves the claim.
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