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Abstract

We present a new methodology, called FLAME, which simultaneously selects im-
portant predictors and produces smooth estimates in a function-on-scalar linear model
with a large number of scalar predictors. To achieve this, the parameters are assumed
to be elements of a Hilbert space, K, which is different from the space of the data,
H. We take K to be a Reproducing Kernel Hilbert Space, RKHS, which allows us to
tune the resulting smoothness of the parameter estimates or incorporate some par-
ticular structure, such as periodicity, without enforcing such structures on the data.
Our model is fit using a form of penalized functional least squares, which induces both
sparsity and smoothness in the resulting estimates. We provide a very fast algorithm
for computing the estimators, which is based on a functional coordinate descent, and
an R package, flm, whose backend is written in C++. Asymptotic properties of the
estimators are developed and simulations are provided to illustrate the advantages of
FLAME over existing methods, both in terms of statistical performance and computa-
tional efficiency. We conclude with an application to childhood asthma, where we find
a potentially important genetic mutation that was not selected by previous functional
data based methods.

1 Introduction

High-dimensional regression and functional data analysis are currently central research areas

in statistics and machine learning. The rising interest in both areas reflects the difficult re-
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alities of “big data” that many scientists are now facing in their work. Increasingly complex

studies and data gathering technologies require sophisticated methods which are mathemat-

ically sound, computationally efficient, and practically interpretable. This work concerns

a new approach for function-on-scalar regression when the number of predictors is much

larger than than number of statistical units. Such data is especially motivated by genetic

studies where one encounters large numbers of scalar predictors. These studies are also now

increasingly likely to contain sophisticated phenotypic measurements that are suitable for

functional data analysis. Our methodology simultaneously exploits the smoothness of the

underlying data and functional parameters, as well as the sparsity of the genetic effects. For

short, we call this framework FLAME, for functional linear adaptive mixed estimation. The

“mixed” here refers to the mixing of functional norms to simultaneously select significant

predictors and smooth their corresponding effect on the functional outcome.

Currently, very little work has been done in this area, but there are several key recent

papers which have made substantial in-roads into this problem. For scalar-on-function re-

gression, there are a few recent works (Matsui and Konishi, 2011; Lian, 2013; Gertheiss

et al., 2013; Fan et al., 2015), but this is the opposite of the problem we consider here. For

funtion-on-scalar regression, Chen et al. (2016) proposed combining functional least squares

with a sparsity inducing penalty. There they took the penalty to be the group minimax con-

cave penalty, MCP (Zhang, 2010). In addition, the authors used a pre-whitening technique

to more fully exploit the within curve dependence. Unfortunately, the method is computa-

tionally expensive and cannot be applied when the number of predictors, I, is greater than

the sample size, N , meaning that it cannot be applied to our intended high-dimensional

applications. As we shall see in Section 5.2.2, the pre-whitening can also be counter pro-

ductive when working with densely sampled functional data. Barber et al. (2016) proposed

the function-on-scalar lasso, FSL, which uses penalized functional least squares. In their ap-

proach they assumed the data and parameters were from an arbitrary Hilbert space, but to

induce sparsity, the penalty was taken to be a type of induced `1 norm on the product space
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of Hilbert spaces where the parameters and data lie. Their approach is computationally

efficient since it is a convex optimization problem, and achieves optimal rates of convergence

for the parameter estimates even when the number of predictors, I, is much larger than the

sample size N (I � N). However, the method, like traditional lasso, does not achieve the

functional oracle property due to a non-negligible asymptotic bias. To that end, in a follow

up paper Fan and Reimherr (2016) developed an adaptive version, AFSL, and showed it

achieves, what we call here, the strong functional oracle property, which we will discuss in

further detail in Section 4. Furthermore, this method can be implemented at nearly the

same computational cost as FSL.

The major contributions of this work are as follows. We develop a new high-dimensional

functional regression methodology that simultaneously selects important predictors and pro-

vides smooth estimates of their effects; previous approaches focussed on selection only. Using

convex analysis over Hilbert spaces, we provide a coordinate descent algorithm for model

fitting and a very fast R package, flm, whose backend is written C++; previous methods

“piggybacked” off of existing multivariate tools while ours is customized for functional data,

resulting in substantial gains in computational efficiency. As part of this computational

efficiency, we also avoid the use of the “Representer Theorem” of RKHSs for expressing

parameter estimates, which, while theoretically convenient, is often not computationally ef-

ficient (Sriperumbudur and Szabó, 2015). Instead we utilize the eigenfunctions of the kernel

to expand the parameters, which can dramatically improve computational efficiency. We

also provide asymptotic theory, which demonstrates that FLAME achieves a functional ver-

sion of the oracle property. This theory requires substantial advances over the theory for

FS-LASSO as we are mixing Hilbert space and RKHS norms, which are not equivalent (in

a mathematical sense). Lastly, our framework allows one to build in a variety of structures

into the parameters, including smoothness and periodicity. As can be seen in Section 5 this

can result in dramatic gains in statistical efficiency.

The paper is organized as follows. In Section 2 we outline several important concepts
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from FDA as well as the modeling assumptions of the data. In Section 3 we detail our

approach, presenting a coordinate descent algorithm which allows FLAME to be computed

very efficiently. In Section 4 we present asymptotic theory, and in Sections 5 we present

numerical illustrations including simulations and an application to a longitudinal genetic

association study.

2 Background and Methodology

For a detailed introduction to FDA we refer the interested reader to Ramsay and Silver-

man (2006); Graves et al. (2009); Horváth and Kokoszka (2012); Hsing and Eubank (2015);

Kokoszka and Reimherr (2017). For an introduction on machine learning and high dimen-

sional regression we refer the reader to Hastie et al. (2001); Bühlmann et al. (2010); James

et al. (2013); Hastie et al. (2015). Let H be a real separable Hilbert space, with norm ‖ · ‖H;

our theory will hold quite generally for data from an arbitrary real separable Hilbert space.

In this way, our methodology is quite broad covering typical spaces such as L2[0, 1], as well

as product spaces, Sobolev spaces, etc. Let K be a compact linear operator from H → H.

We assume that it is positive definite and self-adjoint:

〈Kx, x〉 ≥ 0 〈Kx, y〉 = 〈x,Ky〉.

The spectral theorem (Dunford and Schwartz, 1963) implies that we can decompose K as

K =
∞∑
i=1

θivi ⊗ vi,

where θ1 ≥ θ2 ≥ · · · ≥ 0 are the ordered eigenvalues and vi ∈ H are the corresponding

eigenfunctions. The eigenfunctions {vi} form an orthonormal basis in H. The tensor product

x⊗y is used to denote the operator (x⊗y)(h) := 〈y, h〉x. We define a subspace of H, denoted
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K, as follows:

K :=

{
h ∈ H :

∞∑
i=1

〈h, vi〉2

θi
= 〈K−1h, h〉 <∞

}
.

If we equip K with the norm ‖h‖K = ‖K−1/2h‖H then this space also a Hilbert space. Here it

is understood that 0/0 = 0. When H is L2[0, 1] and the kernel of K is a bivariate function,

i.e. K(t, s), then K is also a reproducing kernel Hilbert space (Berlinet and Thomas-Agnan,

2011).

We now make the following modeling assumption about the response functions, Yn ∈ H,

and the predictors Xn,i ∈ R.

Assumption 1 Let Y1, . . . , YN be elements of H, satisfying the functional linear model

Yn =
I∑
i=1

Xn,iβ
?
i + εn,

where X = {Xn,i} ∈ RN×I is the deterministic design matrix with standardized columns, and

εn are i.i.d. Gaussian random elements of H with mean function 0 and covariance operator C.

We assume that there exists 0 ≤ I0 ≤ I such that only β?1 , . . . , β
?
I0

are nonzero. This means

that, for notational simplicity, the first I0 of the predictors are significant in the model. We

will use the notation X = (X1 X2) to partition the predictors into the significant predictors,

X1, and the null predictors X2.

Note that any Gaussian process in H will necessarily have a mean function in H and a co-

variance operator C which is compact, symmetric, and positive definite (Laha and Rohatgi,

1979). In our theory, the normality is only used to derive functional concentration inequal-

ities. These inequalities determine the rate at which I can grow with N . When the errors

are Gaussian, one has that I can grow exponentially fast relative to N , and the assumptions

(as given in Assumption 2) are easier to interpret. Our arguments can be readily general-

ized to the non-normal case, but the rates will change and the assumptions will be more

complicated, we thus do not pursue that direction presently.
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The FLAME target function is given by

L(β) =
1

2N

N∑
n=1

||Yn −X>n β||2H + λ
I∑
i=1

ω̃i||βi||K =
1

2N
||Y −Xβ||2H + λ

I∑
i=1

ω̃i||βi||K,

with Y ∈ HN , X ∈ RN×I and Xn = X(n,·) ∈ RI , β ∈ KI . Throughout, we use notation such

as HN to denote product spaces. For the sake of simplicity, we abuse notation a bit by letting

‖ · ‖H also denote the induced Hilbert space norm on product spaces such as HN . There are

at least a few data driven ways one can choose the weights ω̃i. One option is to use marginal

regressions to get initial parameter estimates, then the weights would be one over the norms

of those estimates (Huang et al., 2008). Another option is to run FSL first and then use its

corresponding estimates. This has the advantage of also dramatically reducing the dimension

of the problem, and is the approach we take for developing our asymptotic theory in Section

4. Lastly, one could first run the nonadaptive version of FLAME (i.e. with ω̃ ≡ 1) to obtain

preliminary estimates, β̃i, and then compute the weights as ω̃i = ‖β̂i,N‖−1
K . This is the

approach we take for our empirical work in Section 5. Our reasoning is that we wanted a

more pure comparison between the different methods to compare their performances. Since

all of the methods, except FSL, utilize a preliminary run to different degrees, opening the

door to mixing and matching would create a huge number of potential options, and is beyond

the scope of this paper.

In our approach we use the norm ‖·‖K to both induce sparsity and smooth the parameter

estimates. Previous approaches have focused only on one or the other. Furthermore, by

allowing for a general K, we provide a framework which is very flexible and can accommodate

a variety of underlying assumptions about the parameters, such as periodicity and boundary

conditions. The purpose of the data driven weights is to penalize “smaller” parameters more,

and thus not shrink the larger ones as much. This allows the estimator to be asymptotically

unbiased and achieve an oracle property. We now discuss several examples of popular kernels.

Example 1 (Sobelev Space) Consider H = L2(D), where D is a compact subset of Rd.
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Define K to be the subset of functions in L2(D) that have up to and including mth order

derivatives that are also in L2(D). A family of norms can be defined on K as

‖x‖2
K =

∑
|α|≤m

1

σ2
α

∫
D
|x(α)(s)|2 ds.

Here α is a d-dimensional vector of integers whose sum is less than or equal to m, while the

σα are nonzero weights. Equipped with this norm, K is an RKHS if and only if m > d/2. In

the case where D = [0, 1] and m = 1, we have that

K(t, s) =


σ

sinh(σ)
cosh(σ(1− s)) cosh(σt) t ≤ s

σ
sinh(σ)

cosh(σ(1− t)) cosh(σs) t > s

.

One can then numerically solve for the eigenfunctions and eigenvalues of K. These details

can be found on Page 281 of Berlinet and Thomas-Agnan (2011).

Example 2 (Gaussian Kernel) Let H = L2(D), then the Gaussian kernel is given by

K(s, s′) = exp
{
−σ|s− s′|2

}
.

While the Sobelev spaces contain functions which are differentiable up to a given order, the

space K here contains functions which are infinitely differentiable. When used in FLAME,

such a kernel will produce very smooth estimates.

Example 3 (Exponential Kernel) The exponential kernel is on the other end of the “smooth-

ness” spectrum compared to the Gaussian kernel. In this case we have

K(s, s′) = exp {−σ|s− s′|} .

This seemingly minor adjustment to the power in the exponent produces a space consisting

of continuous functions which need not be differentiable. Using this kernel will produce
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substantially rougher FLAME estimates than the Gaussian kernel. In practice, they will

be a bit rougher than the Sobolev kernel as well.

Example 4 (Periodic Kernel) A very useful feature of working with an RKHS is that one

can incorporate structures such as periodicity and boundary conditions into the parameter

estimates. This may be useful, for example, when the domain represents time over the course

of a year. In that case, one might expect the parameters to be periodic. In this case one

may use the periodic kernel with period p = 1 for yearly periodicity, p = 1/2 for semestral

periodicity, or p = 1/4 for seasonal. The periodic kernel with period p is defined as

K(s, s′) = σ2 exp

{
−2/σ sin2

(
π|s− s′|

p

)}
.

More general boundary conditions can be worked into Sobelev spaces and norms, but we

refrain from printing the details here, since we will not explore them in our simulations. An

interested reader is referred to, for example, Section 4 of Chapter 7 in Berlinet and Thomas-

Agnan (2011) who list many examples of kernels that can work in different structures.

3 Implementation and computational details

In this section we develop a coordinate descent algorithm for quickly finding the FLAME

estimator. These methods are implemented in an accompanying R package flm. The com-

putationally intensive functions in this package are coded in C++, so that the methodology

can be implemented very quickly even for very large datasets.

The algorithm is based on utilizing functional subgradients so that, at each step, individ-

ual parameter estimates can be updated very quickly in a nearly closed form. An interested

reader is referred to Boyd and Vandenberghe (2004); Bauschke and Combettes (2011); Barbu

and Precupanu (2012); Shor (2012) for more details on subgradients and subdifferentials.

Subgradients generalize derivatives (in this case Fréchet derivatives) to convex functionals

(mappings from H to R) which are not necessarily differentiable. At any point where the
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functional is differentiable, the two notions coincide, but subgradients are well defined much

more broadly to convex functionals that need not be differentiable. Let f : H → R be a

convex functional. We say that h ∈ H is a subgradient of f at x ∈ H if for all y ∈ H we have

f(x+ y)− f(x) ≥ 〈h, y〉.

We denote by ∂f(x) the collection of all subgradients of f at x, called the subdifferential.

Trivially, x is a minimizer of f if and only if 0 ∈ ∂f(x). We show in the supplemental

material that the subgradient for FLAME is given by

(1)
∂

∂βi
Lλ(β) = − 1

N

N∑
n=1

Xn,iK(Yn −X>n β) + λω̃i


||βi||−1

K βi, βi 6= 0

{h ∈ K : ||h||K ≤ 1}, βi = 0

.

At each step of the coordinate descent we can use (1) to update our estimates. In particular,

suppose that β̂ is our current estimate and we aim to update the ith coordinate, β̂i. The

least squares estimator would be

β̌i =
1

N

N∑
n=1

Xn,iEn where En = Yn −
∑
j 6=i

Xn,jβ̂j.

We can then express the subgradient as

∂

∂βi
L(β) = −K(β̌) +K(βi) + λωi


||βi||−1

K βi, βi 6= 0

{h ∈ K : ||h||K ≤ 1}, βi = 0

.

We can immediately observe that

(2) ||K(β̌i)||K ≤ λωi =⇒ β̂i = 0.
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Note this also indicates a useful starting value of λ for the algorithm; if we take

λ = max
i=1,...,I

{ω−1
i ‖N−1

∑
XniK(Yn)‖K},(3)

then the solution will always be β̂i = 0. When β̂i 6= 0, we can solve for it in a nearly closed

form. In particular, we have

−K(β̌i) +K(β̂i) +
λωi

||β̂i||K
β̂i = 0 =⇒ β̂i =

(
K +

λωi

‖β̂i‖K

I

)−1

K(β̌i).(4)

The only unknown quantity at this point is ‖β̂i‖K. Unfortunately, its expression does not

have a closed form solution (unlike FLS or AFSL). However, if we take the K-norm of the

expression in (4) we arrive at the following equation that can be solved numerically

1 =
∞∑
j=1

θj〈β̌i, vj〉2

(θj||β̂i||K + λωi)2
.

Our coordinate descent algorithm therefore proceeds iteratively, defining a sequence of β(t) for

t = 1, . . . , T which converges to the desired approximation β̂. We set the maximum number

of iterations T and a stopping criteria based on the improvement in the estimation of the β

coefficients (i.e. the K-norm of the increment should be higher than a fixed tolerance).

Regarding the weights, ω̃i, we run the algorithm twice. The first one (the non-adaptive

step) is run with weights set to 1, and the second time (adaptive step) we take ω̃j = ‖β̂j,N‖−1
K

with ‖β̂j,N‖K the norm of the β estimated in the non-adaptive step. In particular the adaptive

step is run to improve the estimation of the meaningful predictors and then the algorithm is

run only on the non-zero predictors isolated in the non-adaptive step. These steps must be

run for a sequence of λ and we have to identify a proper λ which maximizes some selection

criterion; we choose λ to minimize the cross validation error, once we have isolated a training

and a test set (randomly sampled as the 25% of the whole data set).

We mention two features we have built into the code which help increase its computational
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efficiency. The first is a warm start which means when moving to the next λ value, we use

the previous β̂ as the initial value for β. Since λ usually changes very little with each step,

this means that the new β̂ can be computed very quickly (usually with just a few iterations).

In this way, one can obtain the solutions for an entire sequence of λ with only marginally

more computation time than with a single λ. The second feature is what we call a kill switch.

This allows the user to set the maximum size for the number of predictors selected by the

model. When the algorithm moves past this threshold, the algorithm is stopped. In certain

applications, one can make a good guess as to the maximum number of predictors that could

conceivably be selected by the model. In these settings, this bound can be used for the kill

switch. For example, in genetic studies, even with hundreds of thousands of predictors, it is

usually safe to assume that far fewer than say 100 SNPs, will actually be selected (usually

the number is far less than 100). The algorithm slows down as more predictors enter the

model, thus this has the potential to provide a substantial computational savings.

Lastly, all functional data methods of this type require some preprocessing of the raw

data into functional units. This is now a fairly well developed step and a more detailed

discussion can be found in Horváth and Kokoszka (2012). In short, we utilize a penalized

cubic bsplines expansion, where the penalty is chosen by generalized cross validation. The

number of bsplines in our simulations and application is taken to be 100 so that the smoothing

is determined entirely by the penalty. In FSL and AFSL one would then commonly rotate to

the FPCA basis so that less that 100 basis functions can be used, thus gaining computational

efficiency. For FLAME, we instead use the eigenfunctions of the kernel K, which we compute

numerically on a fine grid. This allows us to quickly compute both H norms and K norms.

We choose the number of basis functions, J , so that

J∑
j=1

θj ≥ 0.99
∞∑
j=1

θj,

where θj are the eigenvalues of the kernel K. This formulation is similar to explaining 99%
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of the variability in FPCA. We use such a high mark because dimension reduction is not our

goal; we aim to approximate the data nearly exactly.

4 Theoretical Properties

In this section we provide several theoretical guarantees for FLAME. While this theory

provides a strong justification for using FLAME, there are still several interesting theoretical

questions which remain open and will be discussed below. We begin by making the following

assumption concerning the various terms in the model. Very similar assumptions can also

be found in Fan and Reimherr (2016).

Assumption 2 The regression problem satisfies the following.

1. Minimum Signal: Let bN = mini∈S ‖K(β?i )‖K, then we assume the lower bounded

b2
N �

I2
0 log(I)

N
.

2. Tuning Parameter: The tuning parameter λ satisfies the following lower and upper

bounds

I
1/2
0 log(I)

N
<< λ <<

bN√
I0

√
N
.

3. Design Matrix: Let Σ̂11 = N−1X>1 X1, be the design matrix for only the true pre-

dictors. We assume the minimum eigenvalue σmin(Σ̂11) and maximum eigenvalue

σmax(Σ̂11) satisfy:

1

ν1

≤ σmin(Σ̂11) ≤ σmax(Σ̂11) ≤ ν1.

4. Irrepresentable Condition Let Σ̂21 = N−1X>2 X1, be the cross covariance between

the null and true predictors. We assume that

‖Σ̂21Σ̂−1
11 ‖op ≤ φ < 1
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with φ a fixed scalar and ‖ · ‖op the operator norm.

The first assumption is called a minimum signal condition and indicates the minimum magni-

tude (of the signals) required for detecting the relevant predictors. Notice that this condition

is placed on β? relative to K, which means that if K wipes out a signal, the algorithm will

not be able to detect it. The second condition concerns the rate for λ, and takes a fairly

familiar form (Barber et al., 2016; Fan and Reimherr, 2016). Since our FLAME formulation

normalizes the sum of squares by N , the λ needs to tend to zero. The lower bound, indicates

that it cannot go to zero too quickly, otherwise one cannot guarantee that all of the null

predictors are dropped. Conversely, the upper bound actually indicates two things, first if λ

goes to zero too slowly then some of the significant predictors may also be dropped. Second,

the upper bound on λ also ensures the bias is asymptotically negligible for establishing an

oracle property. The third condition on the design matrix simply says that the design matrix

for the true predictors, must be well behaved. This ensures that the oracle estimate as well

as the FLAME estimate are well behaved when restricted to the set of true predictors. The

last condition is interpreted as requiring that the true predictors and the null predictors are

not too correlated. This condition is essentially necessary to obtain an oracle property (Zhao

and Yu, 2006).

Under these conditions, we can now state our primary theorem, which states that FLAME

recovers the true support with probability tending to 1, and that its projections are asymp-

totically normal.

Theorem 1 If the regression problem satisfies Assumptions 1 and 2, the solution of the

FLAME problem, β̂, asymptotically

1. has the same support of the true solution of the regression problem

P (β̂
s
= β?)→ 1,

2. and is equivalent to the Oracle estimator in the sense that, for any sequence hn =
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{hi,n} ∈ KI that satisfies ‖hn‖K ≤M1 and
∑
‖C1/2hi,n‖2

H ≥M2 > 0 we have

√
N〈β̂ − β?, hn〉

σn

D→ N (0, 1) where σ2
n =

∑
i∈S

∑
j∈S

Σ̂−1
11;ij〈C1/2hi, C

1/2hj〉.

The first part of the theorem is a fairly standard result; we are showing that our method is

variable selection consistent. The second result shows that the estimators are consistent and

are asymptotically normal, but there is a serious caveats to this, namely the projections are

normal only when projected onto an element of K, not H. If the Yn were finite dimensional,

then the two would be equivalent, but not in the functional setting.

In the context of functional data, we call Theorem 1 a week oracle property because the

normality occurs in the week topology (i.e. on projections). Such results are not uncommon

in functional data analysis (Cardot et al., 2007). Our next result shows that one can actually

obtain a stronger result, namely, that the FLAME and oracle estimates are asymptotically

equivalent in the strong topology. For this reason, we say that the following theorem is a

strong oracle property. First let us define the oracle estimate, namely

β̂O = {(X>1 X1)−1X>1 Y, 0},

where 0 a vector of zero functions of length I − I0.

Theorem 2 Suppose Assumptions 1 and 2 are satisfied, but that I0 is fixed. Furthermore,

assume there exists a δ > 0 and a constant 0 < B <∞ such that for all i ∈ S

∞∑
j=1

〈β?i , vj〉2

θ1+δ
j

≤ B <∞.

If λ is such that

λ� bN
N1/2[1+1/(1+δ)]

,
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then one also has that
√
N‖β̂ − β̂O‖H = oP (1).

Notice that we have introduced slightly stronger assumptions to achieve a strong oracle

property. In particular, we needed a more explicit assumption on the rate at which the

coordinates of β? decrease. If δ = 0 this simply implies that β? is in K. Lastly, we require

a tighter control of the λ which depends on how quickly the coordinates of β? decrease.

If the coordinates actually terminate (i.e. are zero) at a certain point or if they decrease

exponentially fast, then our assumption on λ is the same as before. The assumption that

I0 is fixed allows us to simplify the results. Using our techniques it is possible to allow

I0 to grow, but we would need additional assumptions on the behavior of the trace of the

covariance operator of the errors with respect to the {vi} basis, and so do not pursue it here.

We believe that our results can be tightened, especially the additional assumptions needed

to achieve Theorem 2. Maybe the major obstacle is obtaining a good control of ‖β̂‖K. This

quantity shows up when updating via coordinate descent and when trying to control the bias

of the FLAME estimate. However, unlike FSL, we do not have an explicit expression for

this quantity in terms of the least squares estimator. If one can obtain a tighter control of

this quantity, it should be easier to relax the assumptions of Theorem 2. Lastly, it might be

interesting to study the asymptotic properties of β̂ under the K norm, instead of the H norm.

For example, it might be of interest to study the estimated derivatives of the parameters.

However, since this is a much stronger norm, clearly additional assumptions will be needed.

Furthermore, the oracle estimate would not be the least squares estimator as this need

not even live in the space K. We thus believe there are many open and exciting questions

concerning the behaviors of such functional estimators and their necessary assumptions.
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5 Empirical study

In this section we introduce several simulation schemes to analyze the performances of

FLAME with different RKHS (Section 5.1) and to compare this method with AFSL and

MCP (Section 5.2). We conclude (Section 5.3) with an application to a large genetic dataset.

For all simulations we assume data in L2[0, 1]. The kernels we consider are three popular

kernels, the Exponential, the Sobolev, and the Gaussian. Moreover, for the specific case

of Section 5.2.3 we introduce the periodic kernel. In Figure 1, the first four eigenfunctions

associated to the Exponential, the Sobolev, and the Gaussian kernel are plotted and the

explained variance is shown. These three kernels show different structure and complex-

ity; in Section 5.1 the consequences of the different smoothness levels required to functions

embedded in these kernels are presented.

All simulations used 100 runs on a Intel quad-core i7 desktop with 8GB of ram with the

vecLib linear algebra library of R and measured in terms of:

• computational time: median of the computational time (sec.) of the runs.

• number of true positive predictors : average number of correctly non-zero predictors

identified (i.e. #{i : β?i 6= 0 ∧ β̂i 6= 0}).

• number of false positive predictors : average number of wrongly identified non-zero

predictors (i.e. #{i : β?i = 0 ∧ β̂i 6= 0}).

• prediction error : average of the prediction error, both for data and derivatives,∑N
n=1 ‖ Xnβ

? − Xnβ̂ ‖L2 and
∑N

n=1 ‖ Xnβ
?′ − Xnβ̂

′ ‖L2

5.1 Comparison between different kernels

In this section we compare the performance of FLAME using different kernels. We show

how the variation of the kernel can influence the identification of the number of correctly
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Figure 1: Representation of the first four eigenfunctions for each kernel with different σ. From
the left: the Exponential, the Sobolev and the Gaussian kernel. The legend at the top of each panel
denotes proportion of the explained variability for each eigenfunction.
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Figure 2: Example of 10 β? coefficients for the smooth (left panel) and rough (right panel)
simulation setting.
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Figure 3: Summary of the simulations varying kernel for the rough case. From the left, the
prediction error, the prediction error on derivatives, and the number of true and false positive
predictors. We can notice that in all the simulations the number of False Positive estimated
predictors is 0. No extra parameters are estimated with FLAME, while the number of True Positive
predictors increases with the roughness level of the kernel.

identified predictors and the prediction error. Two high-dimensional simulation settings are

introduced: with rough and smooth β? coefficients.

The simulations consist of the random generation of a sample of size N = 500 and I =

1000 predictors, with I0 = 10 significant ones. The predictor matrix X is the standardized

version of a matrix randomly sampled from a N dimension Gaussian distribution with 0

average and covariance ΣX = 1. For the rough case, the true coefficients β?(t) are sampled

from a Matérn process with 0 average and parameters (ν = 2.5, range = 1/4, σ2 = 1), while

for the smooth setting the range parameter of the Matérn process is set to 1 and ν is set

to 3.5. In Figure 2 an example of the true coefficients in the two settings is shown. The

outcomes, Yn(t), are obtained as the sum of the contribution of all the predictors and a

random noise, a 0-mean Matérn process with parameters (ν = 1.5, range = 1/4, σ2 = 1).

Functions are sampled on an evenly spaced grid between 0 and 1 with m = 50 points.
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For these simulations the kill switch parameter is set to 2I0 = 20 and λ spans a logarithmic

equispaced 100-point gird from λmax of (3) to rλλmax with rλ = 0.01 for the rough case and

rλ = 0.001 for the smooth setting. A summary of the result is shown in Figure 3 for the

rough case and in Figure 4 for the smooth case.

Focusing on the rough setting we notice that the Gaussian kernel always performs worse

than other kernels in terms of prediction error both for data and derivatives: it imposes on

the functions a structure (infinitely differentiable) they don’t possess. Moreover, increasing

the σ parameter of the kernels, which results in a rougher estimates, reduces the prediction

error and more true non zeros predictors are identified. In fact, with a too strong smoothness

level, imposed by the Gaussian kernel or by a small value for the σ parameter, some true

predictors are forced to be zero throughout the domain and this reduces the number of true

positives and increases the prediction error. The rough structure of the parameters allows

to all the methods presented to avoid the identification of non significant predictors and the

number of False Postive is always zero.

A slightly different behavior can be observed in the smooth case. The performance of

the Gaussian kernel, while still worse, is now much closer in performance to the other two

kernels. The strange behavior of the prediction error of derivatives for the gaussian and

the exponential kernel is due to an instability in the estimation of the derivatives of the

eigenfunctions of these kernels at the boundaries of the time domain (not shown here). The

number of False Positive predictors in this setting is different from zero (but it remains on

average smaller than one per simulation).

A final remark regarding the high dimensional setting is the computational cost of the

estimation and variable selection procedure. As presented in Table 1, the computational time

is almost invariant with respect to the kernel and parameter, while increasing the smoothness

level of the predictors increases the computational time. In the next section we present how

competitive FLAME is compared to different methods.
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Figure 4: Summary of the simulations varying kernel for the smooth case. From the left, the
prediction error, the prediction error on derivatives, and the number of true and false positive
predictors.

FLAME

Kernel
σ Gaus. Sob. Exp.

0.5 29.30 30.75 41.14
1 21.64 36.62 48.17
2 28.87 43.92 58.67
4 32.34 39.14 61.48
8 32.61 42.99 47.29
16 33.67 42.59 39.95
32 35.47 33.47 40.83

FLAME

Kernel
σ Gaus. Sob. Exp.

0.5 80.38 85.81 95.00
1 77.67 81.33 94.66
2 72.23 87.59 97.95
4 66.69 76.18 91.18
8 58.46 79.12 99.08
16 61.14 80.36 92.98
32 63.23 70.22 69.97

Table 1: Median time for the simulations varying kernel for the rough (left panel) and smooth
case (right panel).
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prediction error prediction error der. True Positive False Positive Time (sec.)

rough setting 352.51 4664.2 9.92 0.08 1031.01
smooth setting 95.43 382.17 9.64 0.41 812.24

Table 2: AFSL results for the rough and smooth high-dimensional simulation setting. Prediction
error, computation time and number of correctly and wrongly identified predictors are presented.
This results have to be compared with Figure 3 and 4 for the estimation and with Table 1 for the
computational efficiency.

5.2 Comparison with previous methods

5.2.1 The high dimensional setting

In this section we apply AFLS to the simulation setting we’ve introduced in Section 5.1 and in

Table 2 we present the results of AFSL estimation in terms of prediction error, computation

time and number of predictors identified (True Positive and False Positive).

A great advantage of FLAME is the reduction of the computation time: FLAME takes

much less than AFSL to run and it also achieves better statistical performance. Mainly in

the rough case, the Exponential and the Sobolev kernel (with σ > 1) perform better in terms

of prediction error on data, derivatives and in the number of true positive and false positive

predictors.

5.2.2 The small dimensional setting

In this section we reduce the simulation size to make the application of MCP possible; this

method is suitable just for N > I schemes. We present the results of FLAME, MCP, and

AFSL with the same rough and smooth settings introduced in Section 5.1, but with N = 50,

I = 20 and I0 = 5. Moreover we focus on the number of points per curve m to detect

whether these three methods are affected by m. For FLAME we focus on the Sobolev kernel

with σ = 8, since, from Section 5.1, it is shown to be a suitable kernel for both these two

settings.

In Figure 5 and 6 the results for the three methods varying m are shown. We notice that

both FLAME and AFSL estimations are almost invariant with respect to m, while MCP is
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Figure 5: Summary of the simulations varying the method for the rough case. From the left,
the prediction error, the prediction error on derivatives, and the number of true and false positive
predictors.
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Figure 6: Summary of the simulations varying the method for the smooth case. From the left,
the prediction error, the prediction error on derivatives, and the number of true and false positive
predictors.
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m MCP FLAME AFSL

15 36.00 12.90 7.34
20 32.20 12.56 7.20
50 92.35 13.00 7.28
100 126.58 12.08 7.15
200 377.36 13.95 6.54

m MCP FLAME AFSL

15 12.84 76.85 7.75
20 13.89 60.39 6.92
50 66.30 45.106 8.11
100 139.86 92.57 7.00
200 221.36 85.45 6.14

Table 3: Median time (sec.) for the simulations varying method for the rough (left panel) and
smooth case (right panel) in the small dimensional setting.

strongly affected by variations of m, becoming very unreliable when the number of points per

curve is large. However, if the number of points is small, MCP performs better than FLAME

and AFSL in terms of prediction error and selecting true predictors, mainly in the smooth

setting, but still often has trouble in terms of false positives. Focusing on the computational

efficiency, presented in Table 3 we notice that FALME and AFSL are comparable, with the

well known higher efficiency of FLAME in the rough case with respect to the smooth, and

they both are almost invariant with the change of m. They globally perform significantly

better than MCP, which in addition becomes slower and slower with the increase of m. The

difference in the efficiency of FLAME and AFSL is due to the method used to solve the

problem: the coordinate descent method of FLAME is faster than ADMM of AFSL in the

high dimensional setting since it is not based on matrix algebra operations, while in the

small setting both coordinate descent and ADMM are efficient.

5.2.3 The periodic setting

In this section we focus on a distinctive feature of FLAME: the possibility of adapting

the choice of the kernel to the prior knowledge on the data. For example in Figure 7

we plot several periodic coefficients β?. When using FLAME with a periodic kernel, the

resulting estimates will also be periodic. In Figure 8, for example, the eigenfunctions of the

periodic kernel with period 1/2 are shown. This kernel is general enough to be used for

the estimations in a simulation setting where β? functions are sampled as periodic functions

with period varying in {1/2, 1/4, 1/8}. AFSL and MCP, on the contrary, don’t allow this
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Figure 7: Example of 5 β? periodic co-
efficients, two have period 0.5, two 0.25
and one 0.125.
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Figure 8: First four eigenfunctions
of the periodic kernel with period 0.5.
Correspondent explained variability is
shown in the top legend

characterizations of the coefficients.

The design matrix X is the standardized realization of a multivariate normal distribution

with 0 average and identity covariance structure and the errors are sampled from a Matérn

process with parameter (ν = 1.5, range = 1/4, σ2 = 1). The aim is to compare the results

of FLAME, MCP, and AFSL. In this particular case, a kernel with period {1/2} allows

FLAME to estimate all the predictors identifying also their periodicity. MCP and AFSL, in

contrast, are estimated in the general L2 space, without any further specifications. In Table

4 we present a summary of the average results across 100 replications for the three methods;

where we see a fairly dramatic increase in statistical performance for FLAME. An example

of the estimates produced by the different methods, based on β? from Figure 7, is given in

Figure 9, where we see a again a fairly dramatic advantage when using FLAME.
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Figure 9: Example of the estimation of the functions of Figure 7 with, from the left, FLAME,
MCP and AFSL.

prediction error prediction error der. True Positive False Positive Time
FLAME 24.99 666.15 4.93 0.03 25.99

MCP 162.24 4055.37 5 5 924.98
AFSL 54.54 2081.90 4.87 0.53 8.04

Table 4: Comparison of the results of the three methods on simulations in the periodic setting.
Average prediction error on data, derivatives, average number of true positive, false positive and
the median computational time are shown.

5.3 Childhood Asthma Management Program

In this section we present the application of FLAME to a large genetic dataset collected

from The Childhood Asthma Management Program Research Group (1999). The Childhood

Asthma Management Project, CAMP, is a longitudinal trial to analyze the longterm impacts

of several daily treatments on children with asthma. It includes 439 Caucasian children, ages

5-12, affected by asthma and monitored for 4 years. These data are freely available from the

dbGaP, Study Accession phs000166.v2.p1 (dbGaP (2009)).

Genotypic informations consists of approximately 670, 000 SNPs with minor allele fre-

quency larger than 5%. We first apply a screening tool from Chu et al. (2016) to isolate a

subset of I = 10, 000 SNPs, on which we apply FLAME. The focus of our analysis is, then,

the detection of the significant SNPs among these 10, 000.

Each child is given one of three treatments: Budesonide, Nedocromil, or a placebo. We

account for age at the beginning of the study and gender. To quantify the lung strength
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Figure 11: Coefficients of the influ-
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of children we consider 16 longitudinal measurements of the Forced Expiratory Volume in

one second (FEV1), a common proxy for lung strength. The lung capacity is the response

function of our linear model and we convert it into a functional data object with a cubic

Bspline basis projection with penalty on the second derivative and smoothing parameter

chosen via generalized cross-validation.

As a first preprocessing step we remove the influence of gender, age, and treatment from

FEV1 and then we apply FLAME to evaluate the impact of the SNPs to the residual functions

shown in Figure 10. In Figure 11 the FLAME estimation is presented; for this analysis we

use the Sobolev kernel with σ = 8, a 200 points grid for λ with the ratio rλ = 0.01. We

identify the presence of 12 significant SNPs, 9 with a positive effect in the lung development

and 3 (rs2206980, rs2041420 and rs953044) with a negative contribution. In Table 5 the list

of the identified SNPs with the comparison with the ones identified by AFSL: we notice that

FLAME identifies two more SNPs, one with positive effect (rs722490) and one with negative

effect (rs2041420).

To add a further comparison with AFSL we identify a test (80% of data) and a training
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SNP
chr name

AFSL FLAME

1 rs1875650 + +
2 rs953044 - -
5 rs1368183 + +
6 rs7751381 + +
6 rs2206980 - -
7 rs17372029 + +
8 rs1540897 + +
8 rs4734250 + +
10 rs4752250 + +
11 rs722490 +
15 rs2019435 + +
20 rs2041420 -

Table 5: List of the identified SNPs with AFSL and FLAME. + identifies the SNPs with positive
effect and - the SNPs with negative effect, empty cells identify non detected SNPs. Informations
on the chromosome location of SNPs and further details can be found in the ALFRED database
(Rajeevan et al. (1999)).

set to compute the prediction error of data as
∑N

n=1 ‖ Yn − Xnβ̂ ‖L2 . We replicate this

analysis 10 times to present a robust conclusion. The average prediction error for FLAME

is 0.200, while for AFSL is 0.205. Moreover measuring the computational time we have for

FLAME a median of 172.01 sec. and for AFSL 365.07 sec. showing the great advantage of

FLAME in terms of computational time, with also a little improvement in term of prediction

error.

As a last point, the SNP selected by FLAME but not by AFSL, rs2041420, is located

on the gene MACROD2. This gene has been associated with a number of negative health

outcomes including Autism, Celiac disease, Crohn’s disease, and Parkinson’s disease (http:

//www.gwascentral.org). It has also been linked to FEV1 and lung development (Strachan

et al., 2007; Repapi et al., 2010). However, neither of these previous studies were based on

CAMP, and therefore helps validate this finding.
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Online Supplemental Material

A Subgradient Equations for FLAME

Before deriving (1) we state the following Lemma which can found in any of the discussed

references on convex analysis.

Lemma 1 Let f1 : H → R be f2 : H → R be two convex functionals over a real separable

Hilbert space H. Then we have the following.

1. If the Fréchet derivative of f1 exists at a point x ∈ H, then the subdifferential of f1 at

x consists of single point which is the derivative of f1 at x.

2. The subdifferential of f1 +f2 is the sum of their respective subdifferentials: ∂(f1 +f2) =

∂f1 + ∂f2. Where the sum is understood as Minkowski sum between two sets.

We now state two lemmas from Fan and Reimherr (2016)

Lemma 2 1. Consider the functional f(x) = ‖x‖2
H. Then f is convex and everywhere

differentiable with

∂f(x) = 2x.

2. Consider the functional f(x) = ‖x‖H. Then f is convex and differentiable when x 6= 0

in which case

∂f(x) = ‖x‖−1
H x x 6= 0.

When x = 0 we have

∂f(0) = {x ∈ H : ‖x‖ ≤ 1}.

We now derive the FLAME subgradient equations. First, we rewrite them using a common

norm:

Lλ(β) =
1

2N
‖K1/2(Y −Xβ)‖2

K + λ
I∑
i=1

ω̃i‖βi‖K.

So Lλ is a convex function from KI → R. Here it is also understood that K1/2(Y ) is applied

coordinate wise to each function. Since K is a real separable Hilbert space we have by Lemma

2.1 and the chain rule that

∂

∂βi

1

2N
‖K1/2(Y −Xβ)‖2

K =
1

N

N∑
n=1

Xn,i(K
1/2(Y −Xβ)).

1



By Lemma 2.2 we have that

∂

∂βi
λ
∑
j=1

ω̃j‖βj‖K = λω̃j

‖βj‖−1
K βj βj 6= 0

{h ∈ H : ‖h‖K ≤ 1} βj = 0
.

Applying Lemma 1 we can combine the two subdifferentials to obtain (1).

B Proofs

The following two lemmas follow from Barber et al. (2016).

Lemma 3 If Assumption 2 holds, the FSL estimate β̃, computed with all the weights set to

1, satisfies

supı∈S‖β?i − β̃i‖H = OP (r
1/2
N ) where rN =

log(I)I0

N
.

Lemma 4 Let X be an H valued Gaussian process with mean zero and covariance operator

C. Then we have the bound

P
{
‖X‖2

H ≥ ‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t

}
≤ exp(−t)

where ‖C‖1 the sum of the eigenvalues of C, ‖C‖2
2 the sum of the squared eigenvalues and

‖C‖∞ the largest one.

Corollary 1 Given the Gaussian process X, with zero mean and covariance operator C,

and given the kernel operator K (represented by the eigenvalues θj: θ1 ≥ θ2 ≥ . . . ≥ 0, and

the eigenvectors vj which define an orthogonal basis for H and K), we can prove that

P
{
‖K(X)‖2

K ≥ θ1(‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t)

}
≤ exp(−t)

Proof From the definition of the K and H norm we obtain that

‖K(X)‖2
K =

∞∑
j=1

〈θjX, vj〉2

θj
=
∞∑
j=1

θj〈X, vj〉2 ≤ θ1

∞∑
j=1

〈X, vj〉2 = θ1‖X‖2
H

Then, since from Lemma 4 we have that

P (‖X‖H < f(C, t)) ≥ 1− exp(−t)

with f(C, t) = ‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t.

2



we prove the statement

P (‖K(X)‖K < θ1f(C, t)) ≥ 1− exp(−t) ⇒ P (‖K(X)‖K ≥ θ1f(C, t)) ≤ exp(−t)

�

Proof of Theorem 1.1

We begin by partitioning the set of the estimated parameters into Ŝ and ŜC where

Ŝ =
{
i ∈ {1, . . . , I} : β̂i 6= 0

}
.

Our aim for this section is then to prove that, with high probability, S = Ŝ, that is β̂ has S
as support.

Suppose, for the moment, that Ŝ = S, then from the subgradient equation (1) we have

that

(5) X>1 K
(
Y −X1β̂1

)
= λs̃1 where s̃1 =

{
Nω̃iβ̂i‖β̂i‖−1

K : i ∈ S
}
,

and β̂1 = {β̂i : i ∈ S} is the estimate of the non-zero predictors. This then implies that

K(β̂1) =
(
X>1 X1

)−1 (
X>1 K(Y )− λs̃1

)
= K(β?1) +

(
X>1 X1

)−1 (
X>1 K(ε)− λs̃1

)
.

To prove that β? and β̂ have the same support (S = Ŝ) we have to verify the following.

• If i ∈ S, β̂1
s
= β?1 , i.e. the true non-zero predictors are correctly identified. This

condition can be also written as

(6) ‖K(β?i )−K(β̂i)‖K < ‖K(β?i )‖K.

• If i /∈ S, β̂i is set to zero, so that the zero predictors are correctly detected. That

means

(7)

∥∥∥∥ 1

N
X>i K

(
Y −X1β̂1

)∥∥∥∥
K

< λω̃i

To achieve a better definition of (6) and (7) we introduce the definition of Y and find, for

3



all i ∈ S

‖K(β?i )−K(β̂i)‖K < ‖K(β?i )‖K =⇒
∥∥∥e>i [N−1Σ̂−1

11 (X>1 K(ε)− λs̃1)
]∥∥∥

K
< ‖K(β?i )‖K

with ei a I-size vector with all zero coefficient but the ith which is 1 and Σ̂11 the estimated

covariance matrix of X1: Σ̂11 = N−1X>1 X1. While, for all i /∈ S∥∥∥∥ 1

N
X>i K

(
Y −X1β̂1

)∥∥∥∥
K

< λω̃i =⇒
∥∥X>i N−1

[
HK(ε) + λX1(X>1 X1)−1s̃1

]∥∥
K
< λω̃i

with H = (I −X1(X>1 X1)−1X>1 ).

Considering the event
{
S = Ŝ

}
, we observe that

{
S 6= Ŝ

}
⊂ B1 ∪B1 ∪B3 ∪B4

with

B1 =

{
1

N
‖e>i Σ̂−1

11 X>1 K(ε)‖K ≥
‖K(β?i )‖K

2
: for some i ∈ S

}
B2 =

{
λ

N
‖e>i Σ̂−1

11 s̃1‖K ≥
‖K(β?i )‖K

2
: for some i ∈ S

}
B3 =

{
1

N
‖X>i HK(ε)‖K ≥

λω̃i
2

: for some i /∈ S
}

B4 =

{
1

N2
‖X>i X1Σ̂−1

11 s̃1‖K ≥
ω̃i
2

: for some i /∈ S
}
.

We will show that with N increasing P (Bl)→ 0 for l = 1, . . . 4 and then P (Ŝ 6= S) → 0.

Step 1: P (B1)→ 0

Given

B1 =

{
1

N
‖e>i Σ̂−1

11 X>1 K(ε)‖K ≥
‖K(β?i )‖K

2
: for some i ∈ S

}
we notice that B1 = ∪i∈SAi where

Ai =

{
1

N
‖e>i Σ̂−1

11 X>1 K(ε)‖K ≥
‖K(β?i )‖K

2

}
=

{
1

N2
‖e>i Σ̂−1

11 X>1 K(ε)‖2
K ≥
‖K(β?i )‖2

K

4

}
and we have that P (B1) ≤

∑
i∈S P (Ai). For each i we have that

1

N2
‖e>i Σ̂−1

11 X>1 K(ε)‖2
K = ‖K(Ti)‖2

K

4



where Ti = N−1e>i Σ̂−1
11 X>1 ε is a Gaussian process (in H) with zero mean and covariance

operator CT

CT = N−1e>i Σ̂−1
11 X>1 X1

(
Σ̂−1

11

)>
eiN

−1C

= N−1e>i Σ̂−1
11 NΣ̂11Σ̂−1

11 eiN
−1C = N−1e>i Σ̂−1

11 eiC.

Recall C the covariance operator of the error process ε. From Corollary 1 we have that

P
{
‖K(Ti)‖2

K ≥ θ1N
−1e>i Σ̂−1

11 ei(‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t)

}
≤ exp(−t).

Define t̃ such that

‖K(β?i )‖2
K

4
≥ θ1N

−1e>i Σ̂−1
11 ei

(
‖C‖1 + 2‖C‖2

√
t̃+ 2‖C‖∞t̃

)
so then

P (Ai) = P

(
‖K(Ti)‖K ≥

‖K(β?i )‖K

2

)
≤ P

(
‖K(Ti)‖2

K ≥
‖K(β?i )‖2

K

4

)
≤ P

(
‖K(Ti)‖2

K ≥ θ1N
−1e>i Σ̂−1

11 ei

(
‖C‖1 + 2‖C‖2

√
t̃+ 2‖C‖∞t̃

))
≤ exp

(
−t̃
)

We can define a constant c such that(
‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t

)
≤ ct

so that t̃ can satisfy the simpler inequality

‖K(β?i )‖2
K

4
≥ 1

N
θ1e
>
i Σ̂−1

11 eict̃.

Recall bN = mini∈S ‖K(β?i )‖K, so then

b2
N

4
≥ ‖K(β?i )‖2

K

4
≥ 1

N
θ1e
>
i Σ̂−1

11 eict̃.

From Assumption 2.3

e>i Σ̂−1
11 ei ≤ ν1

5



then t̃ s.t.

t̃ ≤ Nb2
N

4θ1ν1c

and so, taking t equal to the upper bound we have that

P (Ai) ≤ exp

(
− Nb2

N

4θ1ν1c

)
And, coming back to the statement on B1, we can apply Assumption 2.1 to conclude that

P (B1) ≤
∑
i∈S

P (Ai) ≤ I0 exp

(
− Nb2

N

4ν1θ1c

)
= exp

(
− Nb2

N

4θ1ν1c
+ log(I0)

)
→ 0.

Step 2: P (B2)→ 0

Recall that

B2 =

{
λ

N
‖e>i Σ̂−1

11 s̃1‖K ≥
‖K(β?i )‖K

2
: for some i ∈ S

}
with s̃1 =

{
Nω̃iβ̂i‖β̂i‖−1

K i ∈ S
}

. The K norm of s̃1 is given by

‖s̃1‖2
K =

∑
i∈S

N2ω̃i
2‖β̂i‖2

K

‖β̂i‖2
K

= N2
∑
i∈S

ω̃2
i = N2

(∑
i∈S

ω2
i +

∑
i∈S

(ω̃2
i − ω2

i )

)
,

where w̃i = ‖β̃i‖−1
H is computed using FSL and wi = ‖β?i ‖−1

H . Since the β̃i are consistent in

H (uniformly in i) we can apply the reverse triangle inequality several times to arrive at

|ω̃2
i − ω2

i | ≤
‖β?i − β̃i‖H

‖β?i ‖3
H

(2 + oP (1)),

where the oP (1) again holds uniformly across i ∈ S. From the definition of bN = mini∈S ‖K(β?i )‖K

we have that for all i ∈ S
bN ≤ ‖K(β?i )‖K ≤ θ

1/2
1 ‖β?i ‖H

and moreover from the definition of the rate rN of Lemma (3), uniformly in i

‖β?i − β̃i‖H ≤ supi∈S‖β?i − β̃i‖H = OP (r
1/2
N ).

Then, uniformly in i ∈ S

|ω̃2
i − ω2

i | ≤
2

‖β?i ‖2
H

θ
1/2
1

bN
‖β?i − β̃i‖H ≤

θ
1/2
1

bN
OP (r

1/2
N )ω2

i .
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By Assumption 2, r
1/2
N /bN → 0, and so we conclude

‖s̃1‖2
K ≤ N2

(∑
i∈S

ω2
i

)
(1 + op(1)) = N2

(∑
i∈S

1

‖β?i ‖2
H

)
(1 + op(1))

≤ N2 I0θ
2
1

b2
N

(1 + op(1)).(8)

Then for the original object we have for each i ∈ S

λ

N

‖e>i Σ̂−1
11 s̃1‖K

‖K(β?i )‖K
≤ λ

N

‖e>i Σ̂−1
11 ‖ ‖s̃1‖K

‖K(β?i )‖K

with ‖e>i Σ̂−1
11 ‖ ≤ ‖ei‖‖Σ̂−1

11 ‖op ≤ ν1 form Assumption 2 and in the end

λ

N

‖e>i Σ̂−1
11 ‖ ‖s̃1‖K

‖K(β?i )‖K
≤ λν1

√
I0N

NbNbN
(1 + op(1))→ 0.

Step 3

From the previous definition of B3:

B3 =

{
1

N
‖X>i HK(ε)‖K ≥

λω̃i
2

: for some i /∈ S
}

we define Ai s.t. for i /∈ S

Ai =

{
1

N
‖X>i HK(ε)‖K ≥

λω̃i
2

}
and B3 = ∪i/∈SAi. We can define the gaussian process XiHε, which has zero mean and as

covariance operator X>i HH
>XiC = X>i HXiC, since H is symmetric and idempotent, with

C the covariance operator of the zero mean gaussian process ε. Moreover, since we have that

supi/∈S ‖β̃i‖H = OP

(
r

1/2
N

)
we can notice that ω̃i ≤ 1/ supi/∈S(‖β̃i‖H) and then

Ai ⊆
{
OP

(
r

1/2
N

)
‖X>i HK(ε)‖K ≥

Nλ

2

}
.

Then for any ε > 0 we can find a T = T (ε) > 0 s.t.

P (Ai) ≤
ε

2(I − I0)
+ P

(
‖X>i HK(ε)‖K ≥

Nλ

2Tr
1/2
N

)
.
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As we discussed before, to apply Corollary 1, we need to detect t̃ s.t.

(9) X>i HXi(‖C‖1 + 2‖C‖2

√
t̃+ 2‖C‖∞t̃) ≤

(
Nλ

2Tr
1/2
N

)2

.

Focusing on the left side of the inequality we know that

X>i HXi(‖C‖1 + 2‖C‖2

√
t̃+ 2‖C‖∞t̃) ≤ Nt̃c.

Since H is a projection matrix we have

XiHXi =
N∑
t=1

(
N∑
n=1

Xi,nHn,t

)2

=
N∑
t=1

1 = N,

and again there exists a constant c such that ∀t, ct ≥ (‖C‖1 + 2‖C‖2

√
t + 2‖C‖∞t), so we

define t̃:

t̃cN ≤

(
Nλ

2Tr
1/2
N

)2

⇒ t̃ =
λ2N

4T 2crN
.

Applying corollary 1 we have

P

(
‖X>i HK(ε)‖K ≥

Nλ

2Tr
1/2
N

)
≤ exp

(
− λ2N

4T 2crN

)
≤ exp

(
− I0 log2(I)

N4T 2crN

)

and then we can compute the probability of B3

P (B3) ≤
∑
i/∈S

P (Ai) ≤ (I − I0) exp

(
− I0 log2(I)

4NT 2crN

)
+
ε

2

≤ exp

(
− I0 log2(I)

4NT 2crN
+ log(I − I0)

)
+
ε

2
.

Since rN << (I0 log2(I))/N , we can take N large enough to make the first term smaller then

ε/2 and have the convergence of the probability to 0.

Step 4

Recall that B4 is defined as

B4 =

{
1

N2
‖X>i X1Σ̂−1

11 s̃1‖K ≥
ω̃i
2

: for some i /∈ S
}
.
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Recall from (8)

‖s̃1‖2
K ≤ N2θ2

1

I0

b2
N

(1 + op(1)),

as well as

sup
i/∈S

ω̃i
−1 = OP (r

1/2
N ).

The irrepresentable condition implies

∀i /∈ S, ‖X>i X1Σ̂−1
11 ‖op ≤ ‖Σ̂21Σ̂−1

11 ‖op ≤ φ < 1.

Then we consider the inequality of B4 for a fixed i /∈ S

2‖X>i X1Σ̂−1
11 s̃1‖K

N2ω̃i
≤ 2‖X>i X1Σ̂−1

11 ‖op‖s̃1‖K

N2ω̃i
≤ 2φr

1/2
N I

1/2
0 θ1

NbN
OP (1)→ 0,

which finishes Step 4 and completes the proof.

Proof of Theorem 1.2

Let hn = {hi,n} ∈ KI be a bounded sequence: ‖hn‖K < M1. We will show that

√
N〈hn, β̂ − β?〉H

σn

D→ N (0, 1) where σ2
n =

I0∑
i=1

I0∑
i=1

Σ̂−1
11;ij〈hi,n, Chj,n〉,

assuming that the hi,n are chosen such that
∑

i∈S〈C1/2hi, C
1/2hi〉 ≥ M2 > 0 for some fixed

M2. Recall that the oracle estimator is

β̂SO = (X>1 X1)−1X>1 Y and β̂O = {β̂SO, 0},

where 0 here is the zero function in KI−I0 . Since we assume that the Y are Gaussian, we

have that √
N〈hn, β̂O − β?1〉H ∼ N (0, σ2

n).

By Assumption 2.3 we have that

σ2
n ≥ ν−1

1

∑
i∈S

〈C1/2hi, C
1/2hi〉 ≥ ν1M2,

and so is bounded from below, so we need only to show that

√
N〈hn, β̂O − β̂1〉H = oP (1).
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From equation 5, when Ŝ = S we have that

√
N〈h, β̂O − β̂〉H =

√
Nλ〈(X>1 X1)−1K−1(s̃1), hSn〉H

=
λ√
N
〈Σ−1

11 K
−1/2(s̃1), K−1/2hSn〉

≤ λ√
N
‖Σ−1

11 K
−1/2(s̃1)‖H‖hn‖K.

Applying Assumption 2.3 we have that

λ√
N
‖Σ−1

11 K
−1/2(s̃1)‖H‖hn‖K ≤

λ√
Nν1

‖s̃1‖K‖hn‖K.

From the equation (8) we have

‖s̃1‖K ≤
√
I0N

bN
(1 + op(1))

and then

|
√
N〈h, β̂O − β̂1〉H| ≤

λ
√
I0

√
N‖hn‖K

ν1bN
(1 + oP (1)) = oP (1),

by Assumption 2. Since P
(
Ŝ = S

)
→ 1 the proof is complete.

Proof of Theorem 2

We begin by partitioning the problem into two pieces:

N‖β̂ − β̂O‖2 = N
I∑
i=1

‖β̂i − β̂O;i‖2

= N
I∑
i=1

J∑
i=1

〈β̂ − β̂O, ei ⊗ vj〉2(10)

+N
I∑
i=1

∞∑
i=J+1

〈β̂ − β̂O, ei ⊗ vj〉2.(11)

Bounding (10) follows the similar arguments as in the proof of 1.2, namely

〈β̂ − β̂O, ei ⊗ vj〉2 =
λ2

N2θj
〈Σ̂−1

11 K
−1/2(s̃1), ei ⊗ vj〉2 ≤

λ2

N2θjν2
1

〈K−1/2(s̃1), ei ⊗ vj〉2.
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This gives the bound

N
I∑
i=1

J∑
i=1

〈β̂ − β̂O, vj〉2 ≤
λ2

θJν2
1N
‖s̃1‖2

K ≤
λ2NI0

θJν2
1b

2
N

(1 + oP (1)).

Turning to the second term, we express β̂ using a different form. Notice that we can write

s̃1 = Λβ̂1,

where Λ is a diagonal matrix of the terms {Nw̃i‖β̂i‖−1
K }. We therefore have that

X>1 K(Y )− (X>1 X1)K(β̂)− λΛβ̂1 = 0

We can re-express this equation as

β̂O − β̂1 + λ(X>1 X1)−1ΛK−1(β̂1) = 0 =⇒ β̂1 = (I + λ(X>1 X1)−1ΛK−1)−1β̂O.

The above shrinks (all operators above are positive definite) every coordinate of β̂O to obtain

β̂1 and thus we have that

N
∞∑

j=J+1

∞∑
i=1

〈β̂ − β̂O, ei ⊗ vj〉2 ≤ 4N
∞∑

j=J+1

∞∑
i=1

〈β̂O, ei ⊗ vj〉2.

We compute the expected value

E〈β̂O, ei ⊗ vj〉2 = 〈β?, ei ⊗ vj〉2 + (X>1 X1)−1
i,i 〈Cvj, vj〉.

This implies that

4N
∞∑

j=J+1

∞∑
i=1

〈β̂O, ei⊗vj〉2 = OP (1)N

[
I∑
i=1

∞∑
j=J+1

〈β?, ei ⊗ vj〉2 +
I∑
i=1

∞∑
j=J+1

(X>1 X1)−1
i,i 〈Cvj, vj〉

]
.

Which can be bounded by

OP (1)

[
NI0θ

1+δ
J B2 +

I0

ν1

o(1)

]
,

as long as J →∞, since C is a trace class operator.
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To ensure both (10) and (11) go to zero, we require that J is such that

Nθ1+δ
J → 0 and

λ2N

θJb2
N

→ 0.

So we need to be able to choose J such that

θJ � N−1/(1+δ) and θJ �
λ2N

b2
N

.

This is possible if
λ2N

b2
N

� N−1/(1+δ) ⇐⇒ λ� bN
N1/2+1/(1+δ)

,

as desired.
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