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1 Introduction

The flm package provides an efficient tool to deal with Function-on-Scalar regression problems, mainly when
the number of predictors I is much larger than the number of statistical unit N. The main function of flm is
FLAME that detects the set of significant predictrs and estimates their coefficients with the FLAME method.
FLAME, functional linear adaptive mixed estimation is a methodology that simultaneously exploits the
smoothness of the functional parameters as well as the sparsity of the predictors.

The Function-on-Scalar regression problem that FLAME aims to solve is

Yn =
I∑
i=1

Xn,iβ
?
i + εn,

where Y1, . . . , YN are independent random elements of a general Hilbert space H, X = {Xn,i} ∈ RN×I is a
deterministic design matrix with standardized columns and εn are i.i.d. Gaussian random elements of H such
that εn have 0 mean and covariance operator C.

Then, given the response functions and the predictors, the function FLAME can automatically identify the
significant predictors and define the coefficients in a proper RKHS.

In Section 2 and 3 the detailed procedure of the estimation, from the definition of the kernel of the
generation_kenrel and generation_kernel_periodic functions, to the solution of the Function-on-Scalar
regression problem of the estimation_beta function, with some details on the algorithm implementation. In
Section 4, instead, an exemple of an automatical usage of the package through the introduction of the FLAME
function.
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2 Defintion of the kernel

The main advantage of FLAME is the possibility of controlling the smoothness of the parameter estimates
with the definition of a proper reproducing kernel Hilbert space.

flm has two functions to define different RKHSs: given a specific kernel K, generation_kernel and
generation_kernel_periodic define its eigenvalues θj , eigenfunctions vj and their derivatives. Then K
becomes, for the spectral theorem [Dunford and Schwartz, 1963]

K =
∞∑
j=1

θjvj ⊗ vj

The kernel we examine in this package are the Sobolev, the Exponential, the Gaussian (Section 2.1) and the
Periodic kernel (Section 2.2).

2.1 Exponential, Sobolev and Gaussian kernel

The generation_kernel function allows the user to define the Exponential, the Sobolev and the Gaussian
kernel.

Here an explicit definition of the three kernels:

• Sobelev kernel: Consider H = L2(D), where D is a compact subset of Rd. We can define K to be the
subset of functions in L2(D) that have up to and including mth order derivatives that are also in L2(D).
In this package we limit our analysis to m = 1 and d = 1. Then, we define a family of norms on K as

‖x‖2
K =

∫
D
|x(s)|2 ds+ 1

σ

∫
D
|x(′)(s)|2 ds;

here the σ parameter controls the influence of theH1 norm and then the smoothness of the eigenfunctions.
Increasing σ the smoothness level decreases. Equipped with this norm, K is an RKHS if and only if
m > d/2, as in our case of one-dimensional functions (d = 1) in H1 (m = 1). The kernel cannot always
be written down explicitly, but in the case where D = [0, 1] and m = 1, we have that

K(t, s) =
{

σ
sinh(σ) cosh(σ(1− s)) cosh(σt) t ≤ s
σ

sinh(σ) cosh(σ(1− t)) cosh(σs) t > s
.

Then we can numerically solve the equation to isolate the eigenfunctions and the eigenvalues of K as
the sobolev_kernel function does. This function is implicitly called in generation_kernel. Details
on the Sobolev kernel can be found in [Berlinet and Thomas-Agnan, 2011].

• Gaussian Kernel Let H = L2(D), with D a compact subset of Rd. The Gaussian kernel if d = 1 is
given by

K(s, s′) = exp
{
−σ|s− s′|2.

}
.

While the Sobolev spaces contain functions which are differentiable up to a given order, the space K here
contains functions which are infinitely differentiable. When used in FLAME, such a kernel produces
very smooth estimates. As for the Sobolev kernel, the smoothness level of the kernel is controlled by
the σ parameter. Increasing σ the smoothness level is reduced and FLAME get a more rough estimates.
The definition of the kernel function is coded in the kernlab R package [Karatzoglou et al., 2004].

• Exponential Kernel: The exponential kernel is on the other end of the “smoothness” spectrum
compared to the Gaussian kernel. In the one-dimensional case we have

K(s, s′) = exp {−σ|s− s′|} .
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This seemingly minor adjustment to the power in the exponent produces a space consisting of continuous
functions which need not to be differentiable.
Using this kernel produces substantially rougher FLAME estimates than the Gaussian kernel. They
are also a bit rougher than the Sobolev kernel as well. As for the previous kernels, the smoothness
parameter σ tunes the regularity level of the FLAME estimations. And as for the Gaussian kernel the
kernlab R package [Karatzoglou et al., 2004] provides an explicit definition of the kernel matrix.

The generation_kernel function, then, allows the user to define the eigenfunctions and eigenvalues of
these three different kernels, once the time domain is defined in the domain argument. The type_kernel
parameter defines the type of kernel: 'exponential', 'sobolev' and 'gaussian' are the three possible
choices; the param_kernel argument, instead, is the σ parameter tuning the regularity level. The number of
eigenfunctions vj (which define the basis functions of the RKHS) is chosen as

J∑
j=1

θj ≥ thres
∞∑
j=1

θj .

where the thres parameter is an input of the generation_kernel function and θj are the eigenvalues of the
kernel.

In the following chunk an example of definition of Sobolev kernel with σ = 8 and in ?? the first four
eigenfunctions and their derivatives, with the correspondent ratio of explained variability θj/

∑
j θj .

type_kernel <- 'sobolev'
param_kernel <- 8
M <- 50
T_domain <- seq(0, 1, length = M) # time point grid.
thres <- 0.99 # thresold for the eigenvalues.
kernel_here <- generation_kernel(type = type_kernel,

parameter = param_kernel,
domain = T_domain,
thres = 0.99,
return.derivatives = TRUE)

eigenval <- kernel_here$eigenval
eigenvect <- kernel_here$eigenvect
derivatives <- kernel_here$derivatives

layout(mat = matrix(c(1,2,1,3), nrow = 2, ncol = 2),
heights= c(0.6,3.5),respect = TRUE, widths = c(4,4))

# legend
par(oma=c(0, 0, 0, 0), mar =c(0,0,2,0))
plot(c(1,2,3),c(0,1,1),col=0, xlab ='', ylab='', axes = FALSE)
legend('center', legend = round(eigenval[1:4]/sum(eigenval), 2),

xpd = TRUE, horiz = TRUE,
inset = c(0, 0.98), bty = "n", pch = '-', pt.cex = 2,
col = rainbow(4), cex = 1)

title( main = expression(paste('Sobolev kernel, ', sigma, ' = 8')),
cex.main = 1.2, font.main = 2)

# plot of the eigenfunctions
par(mar=c(4,4, 1, 2) + 0.1)
matplot(T_domain, eigenvect[,1:4], type = 'l', lwd = 2, xlab = 'time',

ylab ='eigenfunctions',
lty = 1, cex = 1, cex.main = 1, cex.lab = 1,
cex.axis = 1, col =rainbow(4), ylim = c(-2,2))

# plot of the derivatives
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par(mar=c(4,4,1, 2) + 0.1)
matplot(T_domain[-50], derivatives[,1:4], type = 'l', lwd = 2, xlab = 'time',

ylab ='derivatives',
lty = 1, cex = 1, cex.main = 1, cex.lab = 1,
cex.axis = 1, col =rainbow(4))
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This example
of Sobolev kenrel is stored in the SobolevKernel dataset of the flm package.

2.2 Periodic kernel

A very useful feature of working with an RKHS is that one can also include periodicity and boundary
conditions into the parameter estimates, using the generation_kernel_periodic function, for example, you
can define a kernel with a fixed periodicity p and a smoothing parameter σ. If you have yearly measurements
with seasonal or semestral periodicity, for example, you may use the periodic kernel with period p = 1/4 or
p = 1/2.

The kernel for period p on a one dimensional dimanin is defined as

K(s, s′) = σ2 exp
{
−2/σ sin2

(
π|s− s′|

p

)}
.

In the following chunk an example of definition of periodic kernel with period = 1/2 and in Figure 1 the
first four eigenfunctions and their derivatives, with the correspondent ratio of explained variability.
kernel_here <- generation_kernel_periodic(period = 1/2,

parameter = param_kernel,
domain = T_domain,
thres = 1-10^{-16},
return.derivatives = TRUE)

eigenval <- kernel_here$eigenval
eigenvect <- -kernel_here$eigenvect
derivatives <- kernel_here$derivatives

layout(mat = matrix(c(1,2,1,3), nrow = 2, ncol = 2),
heights= c(0.6,3.5),respect = TRUE, widths = c(4,4))

# legend
par(oma=c(0, 0, 0, 0), mar =c(0,0,2,0))
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plot(c(1,2,3),c(0,1,1),col=0, xlab ='', ylab='', axes = FALSE)
legend('center', legend = round(eigenval[1:4]/sum(eigenval), 3),

xpd = TRUE, horiz = TRUE,
inset = c(0, 0.98), bty = "n", pch = '-', pt.cex = 2,
col = rainbow(4), cex = 1)

title( main = expression(paste('Periodic kernel, period = 1/2')),
cex.main = 1.2, font.main = 2)

# plot of the eigenfunctions
par(mar=c(4,4, 1, 2) + 0.1)
matplot(T_domain, eigenvect[,1:4], type = 'l', lwd = 2, xlab = 'time',

ylab ='eigenfunctions',
lty = 1, cex = 1, cex.main = 1, cex.lab = 1,
cex.axis = 1, col =rainbow(4), ylim = c(-2,2))

# plot of the derivatives
par(mar=c(4,4,1, 2) + 0.1)
matplot(T_domain[-50], derivatives[,1:4], type = 'l', lwd = 2, xlab = 'time',

ylab ='derivatives',
lty = 1, cex = 1, cex.main = 1, cex.lab = 1,
cex.axis = 1, col =rainbow(4))
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Figure 1: Plot of the first 4 eigenfunctions (left panel) and derivatives (right panel) of the periodic kernel
with period p = 1/2. The correspondent explained variance is on the top of the plot.

3 FLAME estimation

In this section we define an example of generation of data for a Function-on-Scalar linear model (Section 3.1),
we present the definition of the kernel for the estimation (Section 3.2) and an outline of the FLAME method
(Section 3.3) with an analysis of the results (Section 3.4).
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3.1 Generation of data

We define an high-dimensional setting simulation with N = 500 and I = 1000 to highlight both the efficiency
of FLAME in the estimation and in variable selection. Only I0 = 10 predictors, in fact, are meaningful for
the response, the others have null effect on the Y ’s.

The predictor matrix X is the standardized version of a matrix randomly sampled from a N dimension
Gaussian distribution with 0 average and covariance C. The true coefficients β?(t) are sampled from a Matern
process with 0 average and parameters (ν = 2.5, range = 1/4, σ2 = 1).

Observations y(t) are, then, obtained as the sum of the contribution of all the predictors and a random noise,
a 0-mean Matern process with parameters (ν = 1.5, range = 1/4, σ2 = 1). Functions are sampled on a m = 50
points grid.

The Matern covariance operator is defined in the covMaterniso function.

In Figure 2 the plot of the coefficients β∗(t), 20 random errors ε(t) and the correspondent response functions
Y (t).
N <- 500
I <- 1000
I0 <- 10

# defintion of the time domain
m <- 50 # total number of points
T_domain <- seq(0, 1, length = m) # time points, length = m
M_integ <- length(T_domain)/diff(range(T_domain)) # coefficient for the
# computation of the integrals

# defintion of the design matrix X, in this specific case the
# covariance matrix C is the identity matrix
mu_x <- rep(0, I)
C <- diag(I)
X <- mvrnorm(n=N, mu=mu_x, Sigma=C)
X <- scale(X) # normalization

# defintion of the coefficients
nu_beta <- 2.5
range <-1/4
variance <- 1
hyp <- c(log(range), log(variance)/2) # set of parameters for the
# Matern Covariance operator of beta
mu_beta <- rep(0,m) # mean of the beta
Sig_beta <- covMaterniso(nu_beta, rho = range, sigma = sqrt(variance) , T_domain)
beta <- mvrnorm(mu=mu_beta, Sigma=Sig_beta, n=I0) # generation of the
# I0 significant coefficients

# defintion of the random errors
nu_eps <- 1.5
mu_eps <- rep(0, m)
Sig_eps <- covMaterniso(nu_eps, rho = range, sigma = sqrt(variance), T_domain)
eps <- mvrnorm(mu=mu_eps, Sigma=Sig_eps, n=N) # generation of the N
# random errors

I_X <- sort(sample(1:I, I0)) # index of the I0 significant predictors
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Y_true <- X[,I_X]%*%beta
Y_full <- X[,I_X]%*%beta + eps # Y_n observations

par(mfrow = c(1,3), mar=c(4,4,3,2) + 0.1)

# plot of the true beta coefficients
matplot(T_domain, t(beta), type = 'l', lwd = 2, xlab = 'time',

ylab ='beta',
lty = 1, cex = 2, cex.lab = 1.5,
cex.axis = 1.5, col =rainbow(10))

title(main = expression(paste(beta, '*',(t),' coefficients', sep ='')),
cex.main = 1.5, font.main = 2)

# plot of the errors
matplot(T_domain, t(eps[1:20,]), type = 'l', lwd = 2, xlab = 'time',

ylab ='beta',
lty = 1, cex = 2, cex.lab = 1.5,
cex.axis = 1.5, col =rainbow(20))

title(main = expression(paste(epsilon(t),' coefficients', sep ='')),
cex.main = 1.5, font.main = 2)

# plot of the response functions
matplot(T_domain, t(Y_full[1:20,]), type = 'l', lwd = 2, xlab = 'time',

ylab ='beta',
lty = 1, cex = 2, cex.lab = 1.5,
cex.axis = 1.5, col =rainbow(20))

title(main = expression(paste(Y(t),' functions', sep ='')),
cex.main = 1.5, font.main = 2)
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Figure 2: Random generation of data. From the left, 10 coefficients β∗(t), 20 random errors ε(t) and the
correspondent 20 response functions Yn(t).

This data are stored in the simulation dataset of flm.

3.2 Defintion of the kernel and projection

For the simulation we are running we choose as kernel the Sobolev kernel with σ = 8 and a threshold for the
eigenvalues 0.99. The eigenfunctions of the kernel are an orthogonal basis both for the space H and for K;
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then for the following estimation we can project the Yn(t) functions on that basis with the projection_basis
function.
# defintion of the kernel
type_kernel <- 'sobolev'
param_kernel <- 8
m <- 50
T_domain <- seq(0, 1, length = m) # time point grid.
thres <- 0.99 # thresold for the eigenvalues.
kernel_here <- generation_kernel(type = type_kernel,

parameter = param_kernel,
domain = T_domain,
thres = 0.99,
return.derivatives = TRUE)

eigenval <- kernel_here$eigenval
eigenvect <- kernel_here$eigenvect
derivatives <- kernel_here$derivatives

# preojection on the kernel basis of y and beta
Y_matrix <- projection_basis(Y_full, eigenvect, M_integ)
B_true <- projection_basis(beta, eigenvect, M_integ)

matrix_beta_true_full <- matrix(0, dim(B_true)[1], I)
matrix_beta_true_full[,I_X] <- B_true

Given the definition of the derivatives of the eigenfunctions of the kernel (returned by the generation_kernel
function), we can also define the derivatives of the true coefficients β∗ and of the responses
B_true_der <- t(kernel_here$derivatives %*% B_true)

Y_true_der <- X[,I_X]%*%B_true_der

3.3 FLAME estimation

The function estimation_beta is the main function of the flm package and performs the FLAME estimation.
The back-end of this function is written in c++ (in the
FLAME_functions_cpp.cpp function), so that the computation is efficient also in the high dimensional setting.

The function mainly consist of a coordinate-descent algorithm to define the FLAME estimation minimizing
the target function

L(β) = 1
2N

N∑
n=1
||Yn −X>n β||2H + λ

I∑
i=1

ω̃i||βi||K = 1
2N ||Y −Xβ||2H + λ

I∑
i=1

ω̃i||βi||K

with Y ∈ HN , X ∈ RN×I and Xn = X(n,·) ∈ RI , β ∈ KI . Throughout, we use notation such as HN to denote
product spaces. For the sake of simplicity, we abuse notation by letting ‖ · ‖H also denote the induced Hilbert
space norm on product spaces such as HN .

The ω̃i parameters are used to balance the contribution of the different coefficients and to make the LASSO
estimator unbiased. The function estimation_beta has the estimation of ω̃i as first objective. The coordinate-
descent algorithm, in fact is run twice. The first one, the non adaptive step, is run defining as 1 all the
weights ω̃i and the second one, the adaptive step, is run, to obtain an unbiased estimator, with

ω̃i = 1
‖β̂1

i ‖K
,
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where β̂1
i the estimated coefficient of the non-adaptive step.

A key parameter for the estimation is λ, used to balance the prediction error ||Y −Xβ||2H and the smooth-
ness level of the estimations

∑I
i=1 ω̃i||βi||K. The two steps of the algorithm are both run on a grid of

λ and the best value is chosen with a cross-validation criteria, selecting a training set, made up by the
proportion_training_set percent of the data, and the remaining test set. The estimation_beta function
automatically defines the grid for the λ parameter in the two runs as a logarithmic equispaced gird from a
maximum value, λmax

λmax = max
i=1,...,I

ω−1
i ‖N

−1
∑

XniK(Yn)‖K

to the minimum value ratio_lambda ·λmax. The user, beside the ratio_lambda parameter can define also
the length of the grid, in the number_lambda parameter.

Focusing on the coordinate-descent method. It is based on the subgradient equation

∂

∂βi
L(β) = − 1

N

N∑
n=1

Xn,iK(Yn −X>n β) + λω̃i

{
||βi||−1

K βi, βi 6= 0
{h ∈ K : ||h||K ≤ 1}, βi = 0

.

= −K(β̃) +K(βi) + λωi

{
||βi||−1

K βi, βi 6= 0
{h ∈ K : ||h||K ≤ 1}, βi = 0

.

with β̃ the least squares estimator β̃i = 1
N

∑N
n=1 Xn,iEn where En is the residual En = Yn −

∑
j 6=iXn,j β̂j

and it is updated at each iteration. From the subgradient equation we can also detect the meaning of the
maximum value for λ: λmax, in fact, is the minimum value of λ for which all the predictors are guarantee to
have 0 coefficient. For all i

||K(β̃i)||K ≤ λωi

time <- proc.time()
FLAME <- estimation_beta(X = X, # design matrix

Y = Y_matrix, # response functions projected on the kernel basis
eigenval = eigenval, # basis
NoI = 10, # max. num. iterations coordinate descent
thres = 0.1, # stopping threshold for the coordinate descent
number_non_zeros = I0*2, # kill switch parameter
ratio_lambda = 0.01, # ratio for the min. lambda
number_lambda = 100, # num. elements of the grid for lambda
proportion_training_set = 0.75, # training set
verbose = FALSE) # no show of all the iterations

duration <- proc.time()-time
duration

## user system elapsed
## 22.436 0.342 22.100

Moreover we present two features we have included in the algorithm to increase the computational efficiency.
The first is a warm start which means that when moving to the next λ in the grid, we use the previous ˆbeta
as initial estimation and, due to the small changes in λ, this means that the new β̂ can be computed very
quickly. The second feature is the kill switch parameter. This allows the user to set the maximum number
of significant predictors to be selected by the model: when the algorithm moves past this threshold, the
algorithm is stopped.

The estimation_beta function automatically performs all this steps and returns both the final result after
the adaptive step and the intermediate result, just after the non adaptive step:
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names(FLAME)

## [1] "beta" "beta_no_adaptive"
## [3] "predictors" "predictors_no_adaptive"

To directly access to the coordinate descent method and perform manually the estimation, for example fixing
a specific value for λ, a specific set of weights or a specific starting point for the estimated β, the user can
run the definition_beta function, the one that is implicitly called in estimation_beta.

We can notice that the estimation_beta function returns as the estimation of the coefficients β̂ the matrix
of their projection on the kernel basis. The function projection_domain allows to compute the estimation
on the time domain and then to represent the results, as in Figure 3. Here we show a comparison with the
true simulated β∗ functions.
beta_on_time_grid <- projection_domain(FLAME$beta, eigenvect)
y_on_grid_estimated <- X %*% beta_on_time_grid

par(mfrow = c(1,2), mar=c(4,4,3,2) + 0.1)

# plot of the true beta coefficients
matplot(T_domain, t(beta), type = 'l', lwd = 2, xlab = 'time',

ylab ='beta',
lty = 1, cex = 1, cex.lab = 1,
cex.axis = 1, col =rainbow(10), ylim = c(-3, 2))

title(main = expression(paste(beta, '*', ' coefficients', sep ='')),
cex.main = 1.2, font.main = 2)

# plot of the estimated beta
matplot(T_domain, t(beta_on_time_grid[FLAME$predictors,]), type = 'l',

lwd = 2, xlab = 'time',
ylab ='beta',
lty = 1, cex = 1, cex.lab = 1,
cex.axis = 1, col =rainbow(10), ylim = c(-3, 2))

title(main = expression(paste('estimated ',beta,' coefficients', sep ='')),
cex.main = 1.2, font.main = 2)

3.4 Analysis of the results

To analyse the result of this simulation, first of all we detect the relevant predictors isolated by FLAME and
we compare them with the true ones and we notice that FLAME correctly isolates the I0 = 10 relevant
predictors, without any false positive predictor added.
I_X

## [1] 18 97 287 297 433 527 642 709 901 934
FLAME$predictors

## [1] 18 97 287 297 433 527 642 709 901 934
true_positives <- length(which(I_X %in% FLAME$predictors))
true_positives # number of significant predictors correctly identified

## [1] 10
false_positives <- length(which(!(FLAME$predictors %in% I_X)))
false_positives # number of non significant predictors wrongly picked by the algorithm
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Figure 3: In the left panel the plot of the simulated β∗ coefficients, while in the right panel the FLAME
coefficients β̂ are shown.

## [1] 0

Then we introduce a short analysis of the result computing:

• the prediction error on data
∑N
n=1 ‖ Xnβ

∗ − Xnβ̂ ‖L2 ,
• the prediction error on derivatives

∑N
n=1 ‖ Xnβ

∗′ − Xnβ̂
′ ‖L2 ,

• the K-norm of the error in the prediction of the β coefficients
∑I
i=1 ‖β∗i − β̂i‖K. This last error can be

easily computed with the norm_matrix_K function.
beta_der_on_grid_estimated<- kernel_here$derivatives %*% FLAME$beta

prediction_error <- sum(apply(Y_true - y_on_grid_estimated,
1,
function(x)
{
sqrt((2*sum(x^2)-x[1]^2-x[length(x)]^2)/(M_integ*2))

}
)

)
prediction_error

## [1] 218.4758
estimated_y_der_grid <- X %*% t(beta_der_on_grid_estimated)
prediction_error_der <- sum(apply(Y_true_der - estimated_y_der_grid,

1,
function(x)
{
sqrt((2*sum(x^2)-x[1]^2-x[length(x)]^2)/((M_integ-1)*2))

}
)

)
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prediction_error_der

## [1] 2686.848
norm_K_beta <- sum(norm_matrix_K(matrix_beta_true_full - FLAME$beta, eigenval)^2)
norm_K_beta

## [1] 0.7688367

4 The automatical usage of the FLAME method to solve
Function-on-Scalar regression problems

In this final Section we present the FLAME function that allows the user a direct solution of the regression
problem. From an fd object, or a point-wise evaluation of the response functions and the set of predictors,
the function automatically detects the significant predictors and computes the estimation. It is possible to
provide the kernel, choosing among the exponential, the gaussian, the sobolev and the periodic kernel
and fixing the smoothness parameter. Here an example of estimation with the predictors provided as an fd
object. The y(t) of Section 3.1 are represented as their projection on a 20 elements cubic Bspline basis and
then also the estimated coefficients are returned as an fd object.
class(Y_fd)

## [1] "fd"
estimation_auto <- FLAME(Y_fd, # fd object for the response

X, # predictors matrix
number_non_zeros = 20)

# default choice for the kernel is Sobolev with sigma = 8,
names(estimation_auto)

## [1] "beta" "predictors"
class(estimation_auto$beta)

## [1] "fd"
estimation_auto$predictors

## [1] 18 97 287 297 433 527 642 709 901 934
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